Chromatin priming of genes in development: concepts, mechanisms and consequences

Abstract During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigeneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental hematology 2017-05, Vol.49, p.1-8
Hauptverfasser: Bonifer, Constanze, Cockerill, Peter N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title Experimental hematology
container_volume 49
creator Bonifer, Constanze
Cockerill, Peter N
description Abstract During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We describe that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.
doi_str_mv 10.1016/j.exphem.2017.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1867541759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0301472X17300139</els_id><sourcerecordid>1867541759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-86372f1f022db1e0fd31d775ec9a13d6d76a5e0e8b319564bd65bbbf38a088483</originalsourceid><addsrcrecordid>eNqFkU2P1DAMhiMEYoeFf4BQjxxosZumSTkgoRFf0kogARK3KE3cnQxtWpLOiv33pJqFAxdOtuzXfuXHjD1FqBCwfXms6NdyoKmqAWUFWAHwe2yHSvKy5l13n-2AA5aNrL9fsEcpHQFAiA4esotaocpZs2Of94c4T2b1oViin3y4LuahuKZAqcg1Rzc0zstEYX1V2DlYWtb0opjIHkzwaUqFCW5rJPp5otxOj9mDwYyJntzFS_bt3duv-w_l1af3H_dvrkor6m4tVctlPeAAde16JBgcRyelINsZ5K51sjWCgFTPsRNt07tW9H0_cGVAqUbxS_b8vHeJc7ZOq558sjSOJtB8ShpVK0WDUnRZ2pylNs4pRRr0dqqJtxpBbyz1UZ9Z6o2lBtSZZR57dudw6idyf4f-wMuC12cB5TtvPEWdrN8gOB_JrtrN_n8O_y6wow_emvEH3VI6zqcYMkONOtUa9Jftn9s7UXIA5B3_DTsenIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867541759</pqid></control><display><type>article</type><title>Chromatin priming of genes in development: concepts, mechanisms and consequences</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bonifer, Constanze ; Cockerill, Peter N</creator><creatorcontrib>Bonifer, Constanze ; Cockerill, Peter N</creatorcontrib><description>Abstract During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We describe that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.</description><identifier>ISSN: 0301-472X</identifier><identifier>EISSN: 1873-2399</identifier><identifier>DOI: 10.1016/j.exphem.2017.01.003</identifier><identifier>PMID: 28185904</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Advanced Basic Science ; Animals ; Chromatin - genetics ; Chromatin - metabolism ; Epigenesis, Genetic - physiology ; Gene Regulatory Networks - physiology ; Hematology, Oncology and Palliative Medicine ; Humans</subject><ispartof>Experimental hematology, 2017-05, Vol.49, p.1-8</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-86372f1f022db1e0fd31d775ec9a13d6d76a5e0e8b319564bd65bbbf38a088483</citedby><cites>FETCH-LOGICAL-c529t-86372f1f022db1e0fd31d775ec9a13d6d76a5e0e8b319564bd65bbbf38a088483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.exphem.2017.01.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28185904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonifer, Constanze</creatorcontrib><creatorcontrib>Cockerill, Peter N</creatorcontrib><title>Chromatin priming of genes in development: concepts, mechanisms and consequences</title><title>Experimental hematology</title><addtitle>Exp Hematol</addtitle><description>Abstract During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We describe that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Epigenesis, Genetic - physiology</subject><subject>Gene Regulatory Networks - physiology</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><issn>0301-472X</issn><issn>1873-2399</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P1DAMhiMEYoeFf4BQjxxosZumSTkgoRFf0kogARK3KE3cnQxtWpLOiv33pJqFAxdOtuzXfuXHjD1FqBCwfXms6NdyoKmqAWUFWAHwe2yHSvKy5l13n-2AA5aNrL9fsEcpHQFAiA4esotaocpZs2Of94c4T2b1oViin3y4LuahuKZAqcg1Rzc0zstEYX1V2DlYWtb0opjIHkzwaUqFCW5rJPp5otxOj9mDwYyJntzFS_bt3duv-w_l1af3H_dvrkor6m4tVctlPeAAde16JBgcRyelINsZ5K51sjWCgFTPsRNt07tW9H0_cGVAqUbxS_b8vHeJc7ZOq558sjSOJtB8ShpVK0WDUnRZ2pylNs4pRRr0dqqJtxpBbyz1UZ9Z6o2lBtSZZR57dudw6idyf4f-wMuC12cB5TtvPEWdrN8gOB_JrtrN_n8O_y6wow_emvEH3VI6zqcYMkONOtUa9Jftn9s7UXIA5B3_DTsenIk</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Bonifer, Constanze</creator><creator>Cockerill, Peter N</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170501</creationdate><title>Chromatin priming of genes in development: concepts, mechanisms and consequences</title><author>Bonifer, Constanze ; Cockerill, Peter N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-86372f1f022db1e0fd31d775ec9a13d6d76a5e0e8b319564bd65bbbf38a088483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Epigenesis, Genetic - physiology</topic><topic>Gene Regulatory Networks - physiology</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonifer, Constanze</creatorcontrib><creatorcontrib>Cockerill, Peter N</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonifer, Constanze</au><au>Cockerill, Peter N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin priming of genes in development: concepts, mechanisms and consequences</atitle><jtitle>Experimental hematology</jtitle><addtitle>Exp Hematol</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>49</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0301-472X</issn><eissn>1873-2399</eissn><abstract>Abstract During ontogeny, cells progress through multiple alternate differentiation states by activating distinct gene regulatory networks. In this review we highlight the important role of chromatin priming in facilitating gene activation during lineage specification and in maintaining an epigenetic memory of previous gene activation. We describe that chromatin priming is part of a hugely diverse repertoire of regulatory mechanisms that genes use to ensure that they are expressed at the correct time, in the correct cell type, at the correct level, but also that they react to signals. We also emphasize how increasing our knowledge of these principles could inform our understanding of developmental failure and disease.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>28185904</pmid><doi>10.1016/j.exphem.2017.01.003</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-472X
ispartof Experimental hematology, 2017-05, Vol.49, p.1-8
issn 0301-472X
1873-2399
language eng
recordid cdi_proquest_miscellaneous_1867541759
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Chromatin - genetics
Chromatin - metabolism
Epigenesis, Genetic - physiology
Gene Regulatory Networks - physiology
Hematology, Oncology and Palliative Medicine
Humans
title Chromatin priming of genes in development: concepts, mechanisms and consequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin%20priming%20of%20genes%20in%20development:%20concepts,%20mechanisms%20and%20consequences&rft.jtitle=Experimental%20hematology&rft.au=Bonifer,%20Constanze&rft.date=2017-05-01&rft.volume=49&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0301-472X&rft.eissn=1873-2399&rft_id=info:doi/10.1016/j.exphem.2017.01.003&rft_dat=%3Cproquest_cross%3E1867541759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867541759&rft_id=info:pmid/28185904&rft_els_id=1_s2_0_S0301472X17300139&rfr_iscdi=true