Self-Taught convolutional neural networks for short text clustering
Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn...
Gespeichert in:
Veröffentlicht in: | Neural networks 2017-04, Vol.88, p.22-31 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | |
container_start_page | 22 |
container_title | Neural networks |
container_volume | 88 |
creator | Xu, Jiaming Xu, Bo Wang, Peng Zheng, Suncong Tian, Guanhua Zhao, Jun Xu, Bo |
description | Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets. |
doi_str_mv | 10.1016/j.neunet.2016.12.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1865543672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608016301976</els_id><sourcerecordid>1865543672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq2qqElD_0GF9tjLbsdef-VSqYqgRULiAJwtxzuGDZt1sL2h_HtME3rsaTTS887HQ8hXCg0FKr9vmhGnEXPDStdQ1gDoD2ROtVrWTGn2kcxBL9tagoYZ-ZzSBgCk5u0nMmOaCiWEnJPVDQ6-vrXT_UOuXBj3YZhyH0Y7VGV8_Fvyc4iPqfIhVukhxFxl_FPgYUoZYz_en5ITb4eEX451Qe4uzm9Xv-ur61-Xq59XteNM55r6brkW0AqwWgFQzltKrSjXK7r0nbJOerSCw1qsgTLVciV9h1R45aSSvF2Qb4e5uxieJkzZbPvkcBjsiGFKhmopBG-lYgXlB9TFkFJEb3ax39r4YiiYN31mYw76zJs-Q5kp-krs7LhhWm-x-xd691WAHwcAy5_7HqNJrsfRYddHdNl0of__hlfUwYKN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865543672</pqid></control><display><type>article</type><title>Self-Taught convolutional neural networks for short text clustering</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Jiaming ; Xu, Bo ; Wang, Peng ; Zheng, Suncong ; Tian, Guanhua ; Zhao, Jun ; Xu, Bo</creator><creatorcontrib>Xu, Jiaming ; Xu, Bo ; Wang, Peng ; Zheng, Suncong ; Tian, Guanhua ; Zhao, Jun ; Xu, Bo</creatorcontrib><description>Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2016.12.008</identifier><identifier>PMID: 28157556</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Cluster Analysis ; Data Mining - methods ; Humans ; Neural networks ; Neural Networks (Computer) ; Semantic clustering ; Short text ; Unsupervised learning</subject><ispartof>Neural networks, 2017-04, Vol.88, p.22-31</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</citedby><cites>FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2016.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28157556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jiaming</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zheng, Suncong</creatorcontrib><creatorcontrib>Tian, Guanhua</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><title>Self-Taught convolutional neural networks for short text clustering</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.</description><subject>Cluster Analysis</subject><subject>Data Mining - methods</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Semantic clustering</subject><subject>Short text</subject><subject>Unsupervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhq2qqElD_0GF9tjLbsdef-VSqYqgRULiAJwtxzuGDZt1sL2h_HtME3rsaTTS887HQ8hXCg0FKr9vmhGnEXPDStdQ1gDoD2ROtVrWTGn2kcxBL9tagoYZ-ZzSBgCk5u0nMmOaCiWEnJPVDQ6-vrXT_UOuXBj3YZhyH0Y7VGV8_Fvyc4iPqfIhVukhxFxl_FPgYUoZYz_en5ITb4eEX451Qe4uzm9Xv-ur61-Xq59XteNM55r6brkW0AqwWgFQzltKrSjXK7r0nbJOerSCw1qsgTLVciV9h1R45aSSvF2Qb4e5uxieJkzZbPvkcBjsiGFKhmopBG-lYgXlB9TFkFJEb3ax39r4YiiYN31mYw76zJs-Q5kp-krs7LhhWm-x-xd691WAHwcAy5_7HqNJrsfRYddHdNl0of__hlfUwYKN</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Xu, Jiaming</creator><creator>Xu, Bo</creator><creator>Wang, Peng</creator><creator>Zheng, Suncong</creator><creator>Tian, Guanhua</creator><creator>Zhao, Jun</creator><creator>Xu, Bo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201704</creationdate><title>Self-Taught convolutional neural networks for short text clustering</title><author>Xu, Jiaming ; Xu, Bo ; Wang, Peng ; Zheng, Suncong ; Tian, Guanhua ; Zhao, Jun ; Xu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cluster Analysis</topic><topic>Data Mining - methods</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Semantic clustering</topic><topic>Short text</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiaming</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zheng, Suncong</creatorcontrib><creatorcontrib>Tian, Guanhua</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiaming</au><au>Xu, Bo</au><au>Wang, Peng</au><au>Zheng, Suncong</au><au>Tian, Guanhua</au><au>Zhao, Jun</au><au>Xu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Taught convolutional neural networks for short text clustering</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2017-04</date><risdate>2017</risdate><volume>88</volume><spage>22</spage><epage>31</epage><pages>22-31</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28157556</pmid><doi>10.1016/j.neunet.2016.12.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2017-04, Vol.88, p.22-31 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1865543672 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Cluster Analysis Data Mining - methods Humans Neural networks Neural Networks (Computer) Semantic clustering Short text Unsupervised learning |
title | Self-Taught convolutional neural networks for short text clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Taught%20convolutional%20neural%20networks%20for%20short%20text%20clustering&rft.jtitle=Neural%20networks&rft.au=Xu,%20Jiaming&rft.date=2017-04&rft.volume=88&rft.spage=22&rft.epage=31&rft.pages=22-31&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2016.12.008&rft_dat=%3Cproquest_cross%3E1865543672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865543672&rft_id=info:pmid/28157556&rft_els_id=S0893608016301976&rfr_iscdi=true |