Self-Taught convolutional neural networks for short text clustering

Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2017-04, Vol.88, p.22-31
Hauptverfasser: Xu, Jiaming, Xu, Bo, Wang, Peng, Zheng, Suncong, Tian, Guanhua, Zhao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue
container_start_page 22
container_title Neural networks
container_volume 88
creator Xu, Jiaming
Xu, Bo
Wang, Peng
Zheng, Suncong
Tian, Guanhua
Zhao, Jun
Xu, Bo
description Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.
doi_str_mv 10.1016/j.neunet.2016.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1865543672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608016301976</els_id><sourcerecordid>1865543672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq2qqElD_0GF9tjLbsdef-VSqYqgRULiAJwtxzuGDZt1sL2h_HtME3rsaTTS887HQ8hXCg0FKr9vmhGnEXPDStdQ1gDoD2ROtVrWTGn2kcxBL9tagoYZ-ZzSBgCk5u0nMmOaCiWEnJPVDQ6-vrXT_UOuXBj3YZhyH0Y7VGV8_Fvyc4iPqfIhVukhxFxl_FPgYUoZYz_en5ITb4eEX451Qe4uzm9Xv-ur61-Xq59XteNM55r6brkW0AqwWgFQzltKrSjXK7r0nbJOerSCw1qsgTLVciV9h1R45aSSvF2Qb4e5uxieJkzZbPvkcBjsiGFKhmopBG-lYgXlB9TFkFJEb3ax39r4YiiYN31mYw76zJs-Q5kp-krs7LhhWm-x-xd691WAHwcAy5_7HqNJrsfRYddHdNl0of__hlfUwYKN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865543672</pqid></control><display><type>article</type><title>Self-Taught convolutional neural networks for short text clustering</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Jiaming ; Xu, Bo ; Wang, Peng ; Zheng, Suncong ; Tian, Guanhua ; Zhao, Jun ; Xu, Bo</creator><creatorcontrib>Xu, Jiaming ; Xu, Bo ; Wang, Peng ; Zheng, Suncong ; Tian, Guanhua ; Zhao, Jun ; Xu, Bo</creatorcontrib><description>Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2016.12.008</identifier><identifier>PMID: 28157556</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Cluster Analysis ; Data Mining - methods ; Humans ; Neural networks ; Neural Networks (Computer) ; Semantic clustering ; Short text ; Unsupervised learning</subject><ispartof>Neural networks, 2017-04, Vol.88, p.22-31</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</citedby><cites>FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2016.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28157556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jiaming</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zheng, Suncong</creatorcontrib><creatorcontrib>Tian, Guanhua</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><title>Self-Taught convolutional neural networks for short text clustering</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.</description><subject>Cluster Analysis</subject><subject>Data Mining - methods</subject><subject>Humans</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Semantic clustering</subject><subject>Short text</subject><subject>Unsupervised learning</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhq2qqElD_0GF9tjLbsdef-VSqYqgRULiAJwtxzuGDZt1sL2h_HtME3rsaTTS887HQ8hXCg0FKr9vmhGnEXPDStdQ1gDoD2ROtVrWTGn2kcxBL9tagoYZ-ZzSBgCk5u0nMmOaCiWEnJPVDQ6-vrXT_UOuXBj3YZhyH0Y7VGV8_Fvyc4iPqfIhVukhxFxl_FPgYUoZYz_en5ITb4eEX451Qe4uzm9Xv-ur61-Xq59XteNM55r6brkW0AqwWgFQzltKrSjXK7r0nbJOerSCw1qsgTLVciV9h1R45aSSvF2Qb4e5uxieJkzZbPvkcBjsiGFKhmopBG-lYgXlB9TFkFJEb3ax39r4YiiYN31mYw76zJs-Q5kp-krs7LhhWm-x-xd691WAHwcAy5_7HqNJrsfRYddHdNl0of__hlfUwYKN</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Xu, Jiaming</creator><creator>Xu, Bo</creator><creator>Wang, Peng</creator><creator>Zheng, Suncong</creator><creator>Tian, Guanhua</creator><creator>Zhao, Jun</creator><creator>Xu, Bo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201704</creationdate><title>Self-Taught convolutional neural networks for short text clustering</title><author>Xu, Jiaming ; Xu, Bo ; Wang, Peng ; Zheng, Suncong ; Tian, Guanhua ; Zhao, Jun ; Xu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-1fd9b50350a8700144311a5016719fd7ac6fea540b5b01273476fde15f7c67643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cluster Analysis</topic><topic>Data Mining - methods</topic><topic>Humans</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Semantic clustering</topic><topic>Short text</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiaming</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zheng, Suncong</creatorcontrib><creatorcontrib>Tian, Guanhua</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiaming</au><au>Xu, Bo</au><au>Wang, Peng</au><au>Zheng, Suncong</au><au>Tian, Guanhua</au><au>Zhao, Jun</au><au>Xu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Taught convolutional neural networks for short text clustering</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2017-04</date><risdate>2017</risdate><volume>88</volume><spage>22</spage><epage>31</epage><pages>22-31</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction method. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>28157556</pmid><doi>10.1016/j.neunet.2016.12.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2017-04, Vol.88, p.22-31
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_1865543672
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Cluster Analysis
Data Mining - methods
Humans
Neural networks
Neural Networks (Computer)
Semantic clustering
Short text
Unsupervised learning
title Self-Taught convolutional neural networks for short text clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Taught%20convolutional%20neural%20networks%20for%20short%20text%20clustering&rft.jtitle=Neural%20networks&rft.au=Xu,%20Jiaming&rft.date=2017-04&rft.volume=88&rft.spage=22&rft.epage=31&rft.pages=22-31&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2016.12.008&rft_dat=%3Cproquest_cross%3E1865543672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865543672&rft_id=info:pmid/28157556&rft_els_id=S0893608016301976&rfr_iscdi=true