Mimicking exercise in three‐dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation

Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2018-03, Vol.233 (3), p.1985-1998
Hauptverfasser: Kasper, Andreas M., Turner, Daniel C., Martin, Neil R. W., Sharples, Adam P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1998
container_issue 3
container_start_page 1985
container_title Journal of cellular physiology
container_volume 233
creator Kasper, Andreas M.
Turner, Daniel C.
Martin, Neil R. W.
Sharples, Adam P.
description Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co‐culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in‐depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre‐clinical in vitro test‐bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies. This review discusses the current understanding, advances, and future directions for the stimulation of three‐dimensional bioengineered skeletal muscle to investigate the mechanisms of physiological adaptation to exercise.
doi_str_mv 10.1002/jcp.25840
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1865518075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1968162998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4540-4f89a0c33683deb45618ba82f75d77e0702f23382222f37972623f8ec8c3fe093</originalsourceid><addsrcrecordid>eNp1kbtuFDEUhi0EIkug4AWQJRooJvFlPGOXaMVVQVBAPfJ6jne98WWwZwLb8QgUPCFPgpMNFEi4ObLP589H_hF6TMkZJYSd7810xoRsyR20okT1TdsJdhetao82SrT0BD0oZU8IUYrz--iESSqkVGKFfr53wZlLF7cYvkE2rgB2Ec-7DPDr-4_RBYjFpag93rgEcesiQIYRl0vwMNfjsBTjAc-p3ruCMrutngEb8H7xOmMdRxySB3OzC2B2OroSCk4WT7tDdfu0daaK9KinWc_1sYfontW-wKPbeoo-v3r5af2mufjw-u36xUVjWtGSprVSaWI47yQfYdOKjsqNlsz2Yux7ID1hlnEuWV2W96pnHeNWgpGGWyCKn6JnR--U05elzj4EV64n1xHSUgYqOyGoJL2o6NN_0H1acv2WSqlO0o4pJSv1_EiZnErJYIcpu6DzYaBkuI5qqFENN1FV9smtcdkEGP-Sf7KpwPkR-Oo8HP5vGt6tPx6VvwHDFaD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968162998</pqid></control><display><type>article</type><title>Mimicking exercise in three‐dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Kasper, Andreas M. ; Turner, Daniel C. ; Martin, Neil R. W. ; Sharples, Adam P.</creator><creatorcontrib>Kasper, Andreas M. ; Turner, Daniel C. ; Martin, Neil R. W. ; Sharples, Adam P.</creatorcontrib><description>Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co‐culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in‐depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre‐clinical in vitro test‐bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies. This review discusses the current understanding, advances, and future directions for the stimulation of three‐dimensional bioengineered skeletal muscle to investigate the mechanisms of physiological adaptation to exercise.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.25840</identifier><identifier>PMID: 28158895</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; Adaptation, Physiological - physiology ; Bioengineering ; Bioengineering - methods ; Bioreactors ; Cell culture ; Clinical trials ; Electric Stimulation ; electrical stimulation ; Electrical stimuli ; Exercise - physiology ; Humans ; hypertrophy ; In vitro methods and tests ; In vivo methods and tests ; Mechanical loading ; Mimicry ; Molecular modelling ; Motor neurons ; Muscle contraction ; Muscle Contraction - physiology ; Muscle Development - physiology ; Muscle Fibers, Skeletal - physiology ; Muscles ; Musculoskeletal system ; myoblasts ; Perfusion ; Pharmacology ; Physiology ; satellite cells ; Side effects ; Skeletal muscle ; skeletal muscle bioengineering ; Stimulation ; Stimuli ; Stress, Physiological - physiology ; Studies ; Three dimensional models ; Tissue Engineering - methods</subject><ispartof>Journal of cellular physiology, 2018-03, Vol.233 (3), p.1985-1998</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4540-4f89a0c33683deb45618ba82f75d77e0702f23382222f37972623f8ec8c3fe093</citedby><cites>FETCH-LOGICAL-c4540-4f89a0c33683deb45618ba82f75d77e0702f23382222f37972623f8ec8c3fe093</cites><orcidid>0000-0003-1526-9400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.25840$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.25840$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28158895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasper, Andreas M.</creatorcontrib><creatorcontrib>Turner, Daniel C.</creatorcontrib><creatorcontrib>Martin, Neil R. W.</creatorcontrib><creatorcontrib>Sharples, Adam P.</creatorcontrib><title>Mimicking exercise in three‐dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co‐culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in‐depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre‐clinical in vitro test‐bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies. This review discusses the current understanding, advances, and future directions for the stimulation of three‐dimensional bioengineered skeletal muscle to investigate the mechanisms of physiological adaptation to exercise.</description><subject>Adaptation</subject><subject>Adaptation, Physiological - physiology</subject><subject>Bioengineering</subject><subject>Bioengineering - methods</subject><subject>Bioreactors</subject><subject>Cell culture</subject><subject>Clinical trials</subject><subject>Electric Stimulation</subject><subject>electrical stimulation</subject><subject>Electrical stimuli</subject><subject>Exercise - physiology</subject><subject>Humans</subject><subject>hypertrophy</subject><subject>In vitro methods and tests</subject><subject>In vivo methods and tests</subject><subject>Mechanical loading</subject><subject>Mimicry</subject><subject>Molecular modelling</subject><subject>Motor neurons</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Development - physiology</subject><subject>Muscle Fibers, Skeletal - physiology</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>myoblasts</subject><subject>Perfusion</subject><subject>Pharmacology</subject><subject>Physiology</subject><subject>satellite cells</subject><subject>Side effects</subject><subject>Skeletal muscle</subject><subject>skeletal muscle bioengineering</subject><subject>Stimulation</subject><subject>Stimuli</subject><subject>Stress, Physiological - physiology</subject><subject>Studies</subject><subject>Three dimensional models</subject><subject>Tissue Engineering - methods</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kbtuFDEUhi0EIkug4AWQJRooJvFlPGOXaMVVQVBAPfJ6jne98WWwZwLb8QgUPCFPgpMNFEi4ObLP589H_hF6TMkZJYSd7810xoRsyR20okT1TdsJdhetao82SrT0BD0oZU8IUYrz--iESSqkVGKFfr53wZlLF7cYvkE2rgB2Ec-7DPDr-4_RBYjFpag93rgEcesiQIYRl0vwMNfjsBTjAc-p3ruCMrutngEb8H7xOmMdRxySB3OzC2B2OroSCk4WT7tDdfu0daaK9KinWc_1sYfontW-wKPbeoo-v3r5af2mufjw-u36xUVjWtGSprVSaWI47yQfYdOKjsqNlsz2Yux7ID1hlnEuWV2W96pnHeNWgpGGWyCKn6JnR--U05elzj4EV64n1xHSUgYqOyGoJL2o6NN_0H1acv2WSqlO0o4pJSv1_EiZnErJYIcpu6DzYaBkuI5qqFENN1FV9smtcdkEGP-Sf7KpwPkR-Oo8HP5vGt6tPx6VvwHDFaD4</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Kasper, Andreas M.</creator><creator>Turner, Daniel C.</creator><creator>Martin, Neil R. W.</creator><creator>Sharples, Adam P.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1526-9400</orcidid></search><sort><creationdate>201803</creationdate><title>Mimicking exercise in three‐dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation</title><author>Kasper, Andreas M. ; Turner, Daniel C. ; Martin, Neil R. W. ; Sharples, Adam P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4540-4f89a0c33683deb45618ba82f75d77e0702f23382222f37972623f8ec8c3fe093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological - physiology</topic><topic>Bioengineering</topic><topic>Bioengineering - methods</topic><topic>Bioreactors</topic><topic>Cell culture</topic><topic>Clinical trials</topic><topic>Electric Stimulation</topic><topic>electrical stimulation</topic><topic>Electrical stimuli</topic><topic>Exercise - physiology</topic><topic>Humans</topic><topic>hypertrophy</topic><topic>In vitro methods and tests</topic><topic>In vivo methods and tests</topic><topic>Mechanical loading</topic><topic>Mimicry</topic><topic>Molecular modelling</topic><topic>Motor neurons</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Development - physiology</topic><topic>Muscle Fibers, Skeletal - physiology</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>myoblasts</topic><topic>Perfusion</topic><topic>Pharmacology</topic><topic>Physiology</topic><topic>satellite cells</topic><topic>Side effects</topic><topic>Skeletal muscle</topic><topic>skeletal muscle bioengineering</topic><topic>Stimulation</topic><topic>Stimuli</topic><topic>Stress, Physiological - physiology</topic><topic>Studies</topic><topic>Three dimensional models</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasper, Andreas M.</creatorcontrib><creatorcontrib>Turner, Daniel C.</creatorcontrib><creatorcontrib>Martin, Neil R. W.</creatorcontrib><creatorcontrib>Sharples, Adam P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasper, Andreas M.</au><au>Turner, Daniel C.</au><au>Martin, Neil R. W.</au><au>Sharples, Adam P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mimicking exercise in three‐dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2018-03</date><risdate>2018</risdate><volume>233</volume><issue>3</issue><spage>1985</spage><epage>1998</epage><pages>1985-1998</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Bioengineering of skeletal muscle in vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge for the use of electrical stimulation and co‐culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic, pharmacological, and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in‐depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide an opportunity to be used as a pre‐clinical in vitro test‐bed to investigate the mechanisms underlying catabolic disease, while modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies. This review discusses the current understanding, advances, and future directions for the stimulation of three‐dimensional bioengineered skeletal muscle to investigate the mechanisms of physiological adaptation to exercise.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28158895</pmid><doi>10.1002/jcp.25840</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1526-9400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2018-03, Vol.233 (3), p.1985-1998
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_1865518075
source MEDLINE; Access via Wiley Online Library
subjects Adaptation
Adaptation, Physiological - physiology
Bioengineering
Bioengineering - methods
Bioreactors
Cell culture
Clinical trials
Electric Stimulation
electrical stimulation
Electrical stimuli
Exercise - physiology
Humans
hypertrophy
In vitro methods and tests
In vivo methods and tests
Mechanical loading
Mimicry
Molecular modelling
Motor neurons
Muscle contraction
Muscle Contraction - physiology
Muscle Development - physiology
Muscle Fibers, Skeletal - physiology
Muscles
Musculoskeletal system
myoblasts
Perfusion
Pharmacology
Physiology
satellite cells
Side effects
Skeletal muscle
skeletal muscle bioengineering
Stimulation
Stimuli
Stress, Physiological - physiology
Studies
Three dimensional models
Tissue Engineering - methods
title Mimicking exercise in three‐dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mimicking%20exercise%20in%20three%E2%80%90dimensional%20bioengineered%20skeletal%20muscle%20to%20investigate%20cellular%20and%20molecular%20mechanisms%20of%20physiological%20adaptation&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Kasper,%20Andreas%20M.&rft.date=2018-03&rft.volume=233&rft.issue=3&rft.spage=1985&rft.epage=1998&rft.pages=1985-1998&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.25840&rft_dat=%3Cproquest_cross%3E1968162998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968162998&rft_id=info:pmid/28158895&rfr_iscdi=true