Applying Kalman Filter for Correlated Demand Forecasting
Product demands are known to be serially correlated. In this research, a first order autoregressive model, AR (1), is utilized to simulate product demand processes whose behavior are stationary. Since demand forecasting is important to the efficiency improvement of product supply chain system, diffe...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2014-08, Vol.619 (Mechanical and Electrical Technology VI), p.381-384 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | Mechanical and Electrical Technology VI |
container_start_page | 381 |
container_title | Applied Mechanics and Materials |
container_volume | 619 |
creator | Kandananond, Karin |
description | Product demands are known to be serially correlated. In this research, a first order autoregressive model, AR (1), is utilized to simulate product demand processes whose behavior are stationary. Since demand forecasting is important to the efficiency improvement of product supply chain system, different forecasting techniques are utilized to predict product demand. In this research, Kalman filter is deployed to forecast demand simulated by AR (1) model. Product demands are simulated at the different degrees of autoregressive coefficients. After the application of Kalman filter to the designated data, the forecasting errors are calculated and the results indicate that Kalman filter is an efficient technique to predict demands in the future. |
doi_str_mv | 10.4028/www.scientific.net/AMM.619.381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864584086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4204336761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3041-a7a7c561e6be1f276aa9fc154056677e26e5fe9dd0ded3b15d172273d804019e3</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQQBc_wLb6HwKCeEm639lcxFKtii1e9LxsNxNNSZO4u6X037taQfHkaQ7zeDM8hC4IzjimarzdbjNva2hDXdU2ayGMJ4tFJkmRMUUO0IBISdOcK3qIhgwzxQTFQhx9LXBaMCZP0ND7FcaSE64GSE36vtnV7WvyaJq1aZNZ3QRwSdW5ZNo5B40JUCY3EHdlMuscWOND5E_RcWUaD2ffc4ReZrfP0_t0_nT3MJ3MU8swJ6nJTW6FJCCXQCqaS2OKyhLBsZAyz4FKEBUUZYlLKNmSiJLklOasVJhjUgAbocu9t3fd-wZ80OvaW2ga00K38ZooyYXiWMmInv9BV93GtfG7SFFRFJJhFamrPWVd572DSveuXhu30wTrz8o6VtY_lXWsrGNlHSvrWDkKrveC4EzrA9i3X3f-p_gABAqKoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825996308</pqid></control><display><type>article</type><title>Applying Kalman Filter for Correlated Demand Forecasting</title><source>Scientific.net Journals</source><creator>Kandananond, Karin</creator><creatorcontrib>Kandananond, Karin</creatorcontrib><description>Product demands are known to be serially correlated. In this research, a first order autoregressive model, AR (1), is utilized to simulate product demand processes whose behavior are stationary. Since demand forecasting is important to the efficiency improvement of product supply chain system, different forecasting techniques are utilized to predict product demand. In this research, Kalman filter is deployed to forecast demand simulated by AR (1) model. Product demands are simulated at the different degrees of autoregressive coefficients. After the application of Kalman filter to the designated data, the forecasting errors are calculated and the results indicate that Kalman filter is an efficient technique to predict demands in the future.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038352055</identifier><identifier>ISBN: 9783038352051</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.619.381</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Autoregressive processes ; Computer simulation ; Correlation ; Demand ; Economic forecasting ; Efficiency ; Kalman filters ; Mathematical models</subject><ispartof>Applied Mechanics and Materials, 2014-08, Vol.619 (Mechanical and Electrical Technology VI), p.381-384</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Aug 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3041-a7a7c561e6be1f276aa9fc154056677e26e5fe9dd0ded3b15d172273d804019e3</citedby><cites>FETCH-LOGICAL-c3041-a7a7c561e6be1f276aa9fc154056677e26e5fe9dd0ded3b15d172273d804019e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3380?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kandananond, Karin</creatorcontrib><title>Applying Kalman Filter for Correlated Demand Forecasting</title><title>Applied Mechanics and Materials</title><description>Product demands are known to be serially correlated. In this research, a first order autoregressive model, AR (1), is utilized to simulate product demand processes whose behavior are stationary. Since demand forecasting is important to the efficiency improvement of product supply chain system, different forecasting techniques are utilized to predict product demand. In this research, Kalman filter is deployed to forecast demand simulated by AR (1) model. Product demands are simulated at the different degrees of autoregressive coefficients. After the application of Kalman filter to the designated data, the forecasting errors are calculated and the results indicate that Kalman filter is an efficient technique to predict demands in the future.</description><subject>Autoregressive processes</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>Demand</subject><subject>Economic forecasting</subject><subject>Efficiency</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038352055</isbn><isbn>9783038352051</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1Lw0AQQBc_wLb6HwKCeEm639lcxFKtii1e9LxsNxNNSZO4u6X037taQfHkaQ7zeDM8hC4IzjimarzdbjNva2hDXdU2ayGMJ4tFJkmRMUUO0IBISdOcK3qIhgwzxQTFQhx9LXBaMCZP0ND7FcaSE64GSE36vtnV7WvyaJq1aZNZ3QRwSdW5ZNo5B40JUCY3EHdlMuscWOND5E_RcWUaD2ffc4ReZrfP0_t0_nT3MJ3MU8swJ6nJTW6FJCCXQCqaS2OKyhLBsZAyz4FKEBUUZYlLKNmSiJLklOasVJhjUgAbocu9t3fd-wZ80OvaW2ga00K38ZooyYXiWMmInv9BV93GtfG7SFFRFJJhFamrPWVd572DSveuXhu30wTrz8o6VtY_lXWsrGNlHSvrWDkKrveC4EzrA9i3X3f-p_gABAqKoQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kandananond, Karin</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140801</creationdate><title>Applying Kalman Filter for Correlated Demand Forecasting</title><author>Kandananond, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3041-a7a7c561e6be1f276aa9fc154056677e26e5fe9dd0ded3b15d172273d804019e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Autoregressive processes</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>Demand</topic><topic>Economic forecasting</topic><topic>Efficiency</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandananond, Karin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandananond, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Kalman Filter for Correlated Demand Forecasting</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>619</volume><issue>Mechanical and Electrical Technology VI</issue><spage>381</spage><epage>384</epage><pages>381-384</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038352055</isbn><isbn>9783038352051</isbn><abstract>Product demands are known to be serially correlated. In this research, a first order autoregressive model, AR (1), is utilized to simulate product demand processes whose behavior are stationary. Since demand forecasting is important to the efficiency improvement of product supply chain system, different forecasting techniques are utilized to predict product demand. In this research, Kalman filter is deployed to forecast demand simulated by AR (1) model. Product demands are simulated at the different degrees of autoregressive coefficients. After the application of Kalman filter to the designated data, the forecasting errors are calculated and the results indicate that Kalman filter is an efficient technique to predict demands in the future.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.619.381</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-9336 |
ispartof | Applied Mechanics and Materials, 2014-08, Vol.619 (Mechanical and Electrical Technology VI), p.381-384 |
issn | 1660-9336 1662-7482 1662-7482 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864584086 |
source | Scientific.net Journals |
subjects | Autoregressive processes Computer simulation Correlation Demand Economic forecasting Efficiency Kalman filters Mathematical models |
title | Applying Kalman Filter for Correlated Demand Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Kalman%20Filter%20for%20Correlated%20Demand%20Forecasting&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Kandananond,%20Karin&rft.date=2014-08-01&rft.volume=619&rft.issue=Mechanical%20and%20Electrical%20Technology%20VI&rft.spage=381&rft.epage=384&rft.pages=381-384&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038352055&rft.isbn_list=9783038352051&rft_id=info:doi/10.4028/www.scientific.net/AMM.619.381&rft_dat=%3Cproquest_cross%3E4204336761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825996308&rft_id=info:pmid/&rfr_iscdi=true |