Highly doped and exposed Cu( i )–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries

A coordinatively unsaturated copper-nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2016-01, Vol.9 (12), p.3736-3745
Hauptverfasser: Wu, Haihua, Li, Haobo, Zhao, Xinfei, Liu, Qingfei, Wang, Jing, Xiao, Jianping, Xie, Songhai, Si, Rui, Yang, Fan, Miao, Shu, Guo, Xiaoguang, Wang, Guoxiong, Bao, Xinhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3745
container_issue 12
container_start_page 3736
container_title Energy & environmental science
container_volume 9
creator Wu, Haihua
Li, Haobo
Zhao, Xinfei
Liu, Qingfei
Wang, Jing
Xiao, Jianping
Xie, Songhai
Si, Rui
Yang, Fan
Miao, Shu
Guo, Xiaoguang
Wang, Guoxiong
Bao, Xinhe
description A coordinatively unsaturated copper-nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to synthesize highly doped and exposed copper(i)-nitrogen (Cu(i)-N) active sites within graphene (Cu-N[copyC) by pyrolysis of coordinatively saturated copper phthalocyanine, which is inert for the ORR, together with dicyandiamide. Cu(i)-N is identified as the active site for catalyzing the ORR by combining physicochemical and electrochemical studies, as well as density function theory calculations. The graphene matrix could stabilize the high density of Cu(i)-N active sites with a copper loading higher than 8.5 wt%, while acting as the electron-conducting path. The ORR activity increases with the specific surface area of the Cu-N[copyC catalysts due to more exposed Cu(i)-N active sites. The optimum Cu-N[copyC catalyst demonstrates a high ORR activity and stability, as well as an excellent performance and stability in zinc-air batteries with ultralow catalyst loading.
doi_str_mv 10.1039/c6ee01867j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864581518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864581518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-99f427aa0f9abf0791d70190963fc10f9829e78e166228cb7e116277ac83ba263</originalsourceid><addsrcrecordid>eNqNkU1OwzAQhSMEEqWw4QReFqSAnR87XqKoUFAFG1hHjjNuXaV2sF3aIiFxB27ISQgU9qzmafTN0-i9KDol-ILglF9KCoBJQdliLxoQlmdxzjDd_9OUJ4fRkfcLjGmCGR9EbxM9m7db1NgOGiRMg2DTWd_rcjVCGp19vn_cIyGDfgHkdQCP1jrMtUEzJ7o5GEDBroVrPAKltNRgArKb7QwMctCs-kNrkLIOvWojezOhHapFCOA0-OPoQInWw8nvHEZP1-PHchJPH25uy6tpLDOMQ8y5yhImBFZc1Kr_mzQME445TZUk_bZIOLACCKVJUsiaASE0YUzIIq1FQtNhNNr5ds4-r8CHaqm9hLYVBuzKV31iWV6QnBT_QHPMWEYY7tHzHSqd9d6Bqjqnl8JtK4Kr7zqqko7HP3XcpV8ai39T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850774170</pqid></control><display><type>article</type><title>Highly doped and exposed Cu( i )–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, Haihua ; Li, Haobo ; Zhao, Xinfei ; Liu, Qingfei ; Wang, Jing ; Xiao, Jianping ; Xie, Songhai ; Si, Rui ; Yang, Fan ; Miao, Shu ; Guo, Xiaoguang ; Wang, Guoxiong ; Bao, Xinhe</creator><creatorcontrib>Wu, Haihua ; Li, Haobo ; Zhao, Xinfei ; Liu, Qingfei ; Wang, Jing ; Xiao, Jianping ; Xie, Songhai ; Si, Rui ; Yang, Fan ; Miao, Shu ; Guo, Xiaoguang ; Wang, Guoxiong ; Bao, Xinhe</creatorcontrib><description>A coordinatively unsaturated copper-nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to synthesize highly doped and exposed copper(i)-nitrogen (Cu(i)-N) active sites within graphene (Cu-N[copyC) by pyrolysis of coordinatively saturated copper phthalocyanine, which is inert for the ORR, together with dicyandiamide. Cu(i)-N is identified as the active site for catalyzing the ORR by combining physicochemical and electrochemical studies, as well as density function theory calculations. The graphene matrix could stabilize the high density of Cu(i)-N active sites with a copper loading higher than 8.5 wt%, while acting as the electron-conducting path. The ORR activity increases with the specific surface area of the Cu-N[copyC catalysts due to more exposed Cu(i)-N active sites. The optimum Cu-N[copyC catalyst demonstrates a high ORR activity and stability, as well as an excellent performance and stability in zinc-air batteries with ultralow catalyst loading.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c6ee01867j</identifier><language>eng</language><subject>Catalysis ; Catalysts ; Copper ; Exposure ; Graphene ; Metal air batteries ; Oxygen ; Reduction (metal working)</subject><ispartof>Energy &amp; environmental science, 2016-01, Vol.9 (12), p.3736-3745</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-99f427aa0f9abf0791d70190963fc10f9829e78e166228cb7e116277ac83ba263</citedby><cites>FETCH-LOGICAL-c400t-99f427aa0f9abf0791d70190963fc10f9829e78e166228cb7e116277ac83ba263</cites><orcidid>0000-0002-1406-9717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Haihua</creatorcontrib><creatorcontrib>Li, Haobo</creatorcontrib><creatorcontrib>Zhao, Xinfei</creatorcontrib><creatorcontrib>Liu, Qingfei</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xiao, Jianping</creatorcontrib><creatorcontrib>Xie, Songhai</creatorcontrib><creatorcontrib>Si, Rui</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Miao, Shu</creatorcontrib><creatorcontrib>Guo, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><title>Highly doped and exposed Cu( i )–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries</title><title>Energy &amp; environmental science</title><description>A coordinatively unsaturated copper-nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to synthesize highly doped and exposed copper(i)-nitrogen (Cu(i)-N) active sites within graphene (Cu-N[copyC) by pyrolysis of coordinatively saturated copper phthalocyanine, which is inert for the ORR, together with dicyandiamide. Cu(i)-N is identified as the active site for catalyzing the ORR by combining physicochemical and electrochemical studies, as well as density function theory calculations. The graphene matrix could stabilize the high density of Cu(i)-N active sites with a copper loading higher than 8.5 wt%, while acting as the electron-conducting path. The ORR activity increases with the specific surface area of the Cu-N[copyC catalysts due to more exposed Cu(i)-N active sites. The optimum Cu-N[copyC catalyst demonstrates a high ORR activity and stability, as well as an excellent performance and stability in zinc-air batteries with ultralow catalyst loading.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Copper</subject><subject>Exposure</subject><subject>Graphene</subject><subject>Metal air batteries</subject><subject>Oxygen</subject><subject>Reduction (metal working)</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1OwzAQhSMEEqWw4QReFqSAnR87XqKoUFAFG1hHjjNuXaV2sF3aIiFxB27ISQgU9qzmafTN0-i9KDol-ILglF9KCoBJQdliLxoQlmdxzjDd_9OUJ4fRkfcLjGmCGR9EbxM9m7db1NgOGiRMg2DTWd_rcjVCGp19vn_cIyGDfgHkdQCP1jrMtUEzJ7o5GEDBroVrPAKltNRgArKb7QwMctCs-kNrkLIOvWojezOhHapFCOA0-OPoQInWw8nvHEZP1-PHchJPH25uy6tpLDOMQ8y5yhImBFZc1Kr_mzQME445TZUk_bZIOLACCKVJUsiaASE0YUzIIq1FQtNhNNr5ds4-r8CHaqm9hLYVBuzKV31iWV6QnBT_QHPMWEYY7tHzHSqd9d6Bqjqnl8JtK4Kr7zqqko7HP3XcpV8ai39T</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Wu, Haihua</creator><creator>Li, Haobo</creator><creator>Zhao, Xinfei</creator><creator>Liu, Qingfei</creator><creator>Wang, Jing</creator><creator>Xiao, Jianping</creator><creator>Xie, Songhai</creator><creator>Si, Rui</creator><creator>Yang, Fan</creator><creator>Miao, Shu</creator><creator>Guo, Xiaoguang</creator><creator>Wang, Guoxiong</creator><creator>Bao, Xinhe</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1406-9717</orcidid></search><sort><creationdate>20160101</creationdate><title>Highly doped and exposed Cu( i )–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries</title><author>Wu, Haihua ; Li, Haobo ; Zhao, Xinfei ; Liu, Qingfei ; Wang, Jing ; Xiao, Jianping ; Xie, Songhai ; Si, Rui ; Yang, Fan ; Miao, Shu ; Guo, Xiaoguang ; Wang, Guoxiong ; Bao, Xinhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-99f427aa0f9abf0791d70190963fc10f9829e78e166228cb7e116277ac83ba263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Copper</topic><topic>Exposure</topic><topic>Graphene</topic><topic>Metal air batteries</topic><topic>Oxygen</topic><topic>Reduction (metal working)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Haihua</creatorcontrib><creatorcontrib>Li, Haobo</creatorcontrib><creatorcontrib>Zhao, Xinfei</creatorcontrib><creatorcontrib>Liu, Qingfei</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Xiao, Jianping</creatorcontrib><creatorcontrib>Xie, Songhai</creatorcontrib><creatorcontrib>Si, Rui</creatorcontrib><creatorcontrib>Yang, Fan</creatorcontrib><creatorcontrib>Miao, Shu</creatorcontrib><creatorcontrib>Guo, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Guoxiong</creatorcontrib><creatorcontrib>Bao, Xinhe</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Haihua</au><au>Li, Haobo</au><au>Zhao, Xinfei</au><au>Liu, Qingfei</au><au>Wang, Jing</au><au>Xiao, Jianping</au><au>Xie, Songhai</au><au>Si, Rui</au><au>Yang, Fan</au><au>Miao, Shu</au><au>Guo, Xiaoguang</au><au>Wang, Guoxiong</au><au>Bao, Xinhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly doped and exposed Cu( i )–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>12</issue><spage>3736</spage><epage>3745</epage><pages>3736-3745</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>A coordinatively unsaturated copper-nitrogen architecture in copper metalloenzymes is essential for its capability to catalyze the oxygen reduction reaction (ORR). However, the stabilization of analogous active sites in realistic catalysts remains a key challenge. Herein, we report a facile route to synthesize highly doped and exposed copper(i)-nitrogen (Cu(i)-N) active sites within graphene (Cu-N[copyC) by pyrolysis of coordinatively saturated copper phthalocyanine, which is inert for the ORR, together with dicyandiamide. Cu(i)-N is identified as the active site for catalyzing the ORR by combining physicochemical and electrochemical studies, as well as density function theory calculations. The graphene matrix could stabilize the high density of Cu(i)-N active sites with a copper loading higher than 8.5 wt%, while acting as the electron-conducting path. The ORR activity increases with the specific surface area of the Cu-N[copyC catalysts due to more exposed Cu(i)-N active sites. The optimum Cu-N[copyC catalyst demonstrates a high ORR activity and stability, as well as an excellent performance and stability in zinc-air batteries with ultralow catalyst loading.</abstract><doi>10.1039/c6ee01867j</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1406-9717</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2016-01, Vol.9 (12), p.3736-3745
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_miscellaneous_1864581518
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Catalysis
Catalysts
Copper
Exposure
Graphene
Metal air batteries
Oxygen
Reduction (metal working)
title Highly doped and exposed Cu( i )–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20doped%20and%20exposed%20Cu(%20i%20)%E2%80%93N%20active%20sites%20within%20graphene%20towards%20efficient%20oxygen%20reduction%20for%20zinc%E2%80%93air%20batteries&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Wu,%20Haihua&rft.date=2016-01-01&rft.volume=9&rft.issue=12&rft.spage=3736&rft.epage=3745&rft.pages=3736-3745&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c6ee01867j&rft_dat=%3Cproquest_cross%3E1864581518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850774170&rft_id=info:pmid/&rfr_iscdi=true