A Common Rationale for Global Sensitivity Measures and Their Estimation
Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introdu...
Gespeichert in:
Veröffentlicht in: | Risk analysis 2016-10, Vol.36 (10), p.1871-1895 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1895 |
---|---|
container_issue | 10 |
container_start_page | 1871 |
container_title | Risk analysis |
container_volume | 36 |
creator | Borgonovo, Emanuele Hazen, Gordon B. Plischke, Elmar |
description | Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study. |
doi_str_mv | 10.1111/risa.12555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864579161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1850769136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</originalsourceid><addsrcrecordid>eNqNkclOwzAURS0EgjJs-ABkiQ1CCnh2vKwqKCAGqWXaWU7qCEMSFzsB-vekLbBggfDmbc49T34XgF2MjnD3joOL5ggTzvkK6GFOVSIUYaugh4gkCaOUbIDNGJ8RwghxuQ42iEi5lKnqgWEfDnxV-RqOTON8bUoLCx_gsPSZKeHY1tE17s01M3hlTWyDjdDUE3j7ZF2AJ7Fx1SK3DdYKU0a78zW3wN3pye3gLLm8GZ4P-pdJzpTkCWVo0m3GhkiTscLyXMisyCnCFBcGkVwZnBeGp1nKJO3-lAnJmBWGMTPP0C1wsPROg39tbWx05WJuy9LU1rdR41QwLhUW-B8oR1IoTMU_UCIEJ2ph3f-FPvs2dHebU4wzyThlHXW4pPLgYwy20NPQXSrMNEZ6Xpqel6YXpXXw3peyzSo7-UG_W-oAvATeXWlnf6j06Hzc_5Ymy4yLjf34yZjwooWkkuuH66G-vleP7GJ8r0f0E7jerkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845474534</pqid></control><display><type>article</type><title>A Common Rationale for Global Sensitivity Measures and Their Estimation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Borgonovo, Emanuele ; Hazen, Gordon B. ; Plischke, Elmar</creator><creatorcontrib>Borgonovo, Emanuele ; Hazen, Gordon B. ; Plischke, Elmar</creatorcontrib><description>Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.12555</identifier><identifier>PMID: 26857789</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Analysis ; Consistency ; Convergence ; Density ; Estimators ; Global sensitivity measures ; Mathematical models ; Monte Carlo simulation ; probabilistic sensitivity analysis ; Probability ; Risk analysis ; Risk assessment ; Sensitivity ; Sensitivity analysis ; Studies ; uncertainty analysis</subject><ispartof>Risk analysis, 2016-10, Vol.36 (10), p.1871-1895</ispartof><rights>2016 Society for Risk Analysis</rights><rights>2016 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</citedby><cites>FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.12555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.12555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26857789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgonovo, Emanuele</creatorcontrib><creatorcontrib>Hazen, Gordon B.</creatorcontrib><creatorcontrib>Plischke, Elmar</creatorcontrib><title>A Common Rationale for Global Sensitivity Measures and Their Estimation</title><title>Risk analysis</title><addtitle>Risk Analysis</addtitle><description>Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.</description><subject>Analysis</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Density</subject><subject>Estimators</subject><subject>Global sensitivity measures</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>probabilistic sensitivity analysis</subject><subject>Probability</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>uncertainty analysis</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkclOwzAURS0EgjJs-ABkiQ1CCnh2vKwqKCAGqWXaWU7qCEMSFzsB-vekLbBggfDmbc49T34XgF2MjnD3joOL5ggTzvkK6GFOVSIUYaugh4gkCaOUbIDNGJ8RwghxuQ42iEi5lKnqgWEfDnxV-RqOTON8bUoLCx_gsPSZKeHY1tE17s01M3hlTWyDjdDUE3j7ZF2AJ7Fx1SK3DdYKU0a78zW3wN3pye3gLLm8GZ4P-pdJzpTkCWVo0m3GhkiTscLyXMisyCnCFBcGkVwZnBeGp1nKJO3-lAnJmBWGMTPP0C1wsPROg39tbWx05WJuy9LU1rdR41QwLhUW-B8oR1IoTMU_UCIEJ2ph3f-FPvs2dHebU4wzyThlHXW4pPLgYwy20NPQXSrMNEZ6Xpqel6YXpXXw3peyzSo7-UG_W-oAvATeXWlnf6j06Hzc_5Ymy4yLjf34yZjwooWkkuuH66G-vleP7GJ8r0f0E7jerkw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Borgonovo, Emanuele</creator><creator>Hazen, Gordon B.</creator><creator>Plischke, Elmar</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>A Common Rationale for Global Sensitivity Measures and Their Estimation</title><author>Borgonovo, Emanuele ; Hazen, Gordon B. ; Plischke, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Density</topic><topic>Estimators</topic><topic>Global sensitivity measures</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>probabilistic sensitivity analysis</topic><topic>Probability</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgonovo, Emanuele</creatorcontrib><creatorcontrib>Hazen, Gordon B.</creatorcontrib><creatorcontrib>Plischke, Elmar</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgonovo, Emanuele</au><au>Hazen, Gordon B.</au><au>Plischke, Elmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Common Rationale for Global Sensitivity Measures and Their Estimation</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Analysis</addtitle><date>2016-10</date><risdate>2016</risdate><volume>36</volume><issue>10</issue><spage>1871</spage><epage>1895</epage><pages>1871-1895</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26857789</pmid><doi>10.1111/risa.12555</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4332 |
ispartof | Risk analysis, 2016-10, Vol.36 (10), p.1871-1895 |
issn | 0272-4332 1539-6924 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864579161 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Analysis Consistency Convergence Density Estimators Global sensitivity measures Mathematical models Monte Carlo simulation probabilistic sensitivity analysis Probability Risk analysis Risk assessment Sensitivity Sensitivity analysis Studies uncertainty analysis |
title | A Common Rationale for Global Sensitivity Measures and Their Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Common%20Rationale%20for%20Global%20Sensitivity%20Measures%20and%20Their%20Estimation&rft.jtitle=Risk%20analysis&rft.au=Borgonovo,%20Emanuele&rft.date=2016-10&rft.volume=36&rft.issue=10&rft.spage=1871&rft.epage=1895&rft.pages=1871-1895&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.12555&rft_dat=%3Cproquest_cross%3E1850769136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845474534&rft_id=info:pmid/26857789&rfr_iscdi=true |