A Common Rationale for Global Sensitivity Measures and Their Estimation

Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2016-10, Vol.36 (10), p.1871-1895
Hauptverfasser: Borgonovo, Emanuele, Hazen, Gordon B., Plischke, Elmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1895
container_issue 10
container_start_page 1871
container_title Risk analysis
container_volume 36
creator Borgonovo, Emanuele
Hazen, Gordon B.
Plischke, Elmar
description Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.
doi_str_mv 10.1111/risa.12555
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864579161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1850769136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</originalsourceid><addsrcrecordid>eNqNkclOwzAURS0EgjJs-ABkiQ1CCnh2vKwqKCAGqWXaWU7qCEMSFzsB-vekLbBggfDmbc49T34XgF2MjnD3joOL5ggTzvkK6GFOVSIUYaugh4gkCaOUbIDNGJ8RwghxuQ42iEi5lKnqgWEfDnxV-RqOTON8bUoLCx_gsPSZKeHY1tE17s01M3hlTWyDjdDUE3j7ZF2AJ7Fx1SK3DdYKU0a78zW3wN3pye3gLLm8GZ4P-pdJzpTkCWVo0m3GhkiTscLyXMisyCnCFBcGkVwZnBeGp1nKJO3-lAnJmBWGMTPP0C1wsPROg39tbWx05WJuy9LU1rdR41QwLhUW-B8oR1IoTMU_UCIEJ2ph3f-FPvs2dHebU4wzyThlHXW4pPLgYwy20NPQXSrMNEZ6Xpqel6YXpXXw3peyzSo7-UG_W-oAvATeXWlnf6j06Hzc_5Ymy4yLjf34yZjwooWkkuuH66G-vleP7GJ8r0f0E7jerkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845474534</pqid></control><display><type>article</type><title>A Common Rationale for Global Sensitivity Measures and Their Estimation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Borgonovo, Emanuele ; Hazen, Gordon B. ; Plischke, Elmar</creator><creatorcontrib>Borgonovo, Emanuele ; Hazen, Gordon B. ; Plischke, Elmar</creatorcontrib><description>Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.12555</identifier><identifier>PMID: 26857789</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Analysis ; Consistency ; Convergence ; Density ; Estimators ; Global sensitivity measures ; Mathematical models ; Monte Carlo simulation ; probabilistic sensitivity analysis ; Probability ; Risk analysis ; Risk assessment ; Sensitivity ; Sensitivity analysis ; Studies ; uncertainty analysis</subject><ispartof>Risk analysis, 2016-10, Vol.36 (10), p.1871-1895</ispartof><rights>2016 Society for Risk Analysis</rights><rights>2016 Society for Risk Analysis.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</citedby><cites>FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.12555$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.12555$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26857789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Borgonovo, Emanuele</creatorcontrib><creatorcontrib>Hazen, Gordon B.</creatorcontrib><creatorcontrib>Plischke, Elmar</creatorcontrib><title>A Common Rationale for Global Sensitivity Measures and Their Estimation</title><title>Risk analysis</title><addtitle>Risk Analysis</addtitle><description>Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.</description><subject>Analysis</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Density</subject><subject>Estimators</subject><subject>Global sensitivity measures</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>probabilistic sensitivity analysis</subject><subject>Probability</subject><subject>Risk analysis</subject><subject>Risk assessment</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>uncertainty analysis</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkclOwzAURS0EgjJs-ABkiQ1CCnh2vKwqKCAGqWXaWU7qCEMSFzsB-vekLbBggfDmbc49T34XgF2MjnD3joOL5ggTzvkK6GFOVSIUYaugh4gkCaOUbIDNGJ8RwghxuQ42iEi5lKnqgWEfDnxV-RqOTON8bUoLCx_gsPSZKeHY1tE17s01M3hlTWyDjdDUE3j7ZF2AJ7Fx1SK3DdYKU0a78zW3wN3pye3gLLm8GZ4P-pdJzpTkCWVo0m3GhkiTscLyXMisyCnCFBcGkVwZnBeGp1nKJO3-lAnJmBWGMTPP0C1wsPROg39tbWx05WJuy9LU1rdR41QwLhUW-B8oR1IoTMU_UCIEJ2ph3f-FPvs2dHebU4wzyThlHXW4pPLgYwy20NPQXSrMNEZ6Xpqel6YXpXXw3peyzSo7-UG_W-oAvATeXWlnf6j06Hzc_5Ymy4yLjf34yZjwooWkkuuH66G-vleP7GJ8r0f0E7jerkw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Borgonovo, Emanuele</creator><creator>Hazen, Gordon B.</creator><creator>Plischke, Elmar</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>A Common Rationale for Global Sensitivity Measures and Their Estimation</title><author>Borgonovo, Emanuele ; Hazen, Gordon B. ; Plischke, Elmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4975-340d5771a27ab4fe5c67bfc30131fa02c9a1cfa58b8473125b6744e6a44aa27a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Density</topic><topic>Estimators</topic><topic>Global sensitivity measures</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>probabilistic sensitivity analysis</topic><topic>Probability</topic><topic>Risk analysis</topic><topic>Risk assessment</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borgonovo, Emanuele</creatorcontrib><creatorcontrib>Hazen, Gordon B.</creatorcontrib><creatorcontrib>Plischke, Elmar</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borgonovo, Emanuele</au><au>Hazen, Gordon B.</au><au>Plischke, Elmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Common Rationale for Global Sensitivity Measures and Their Estimation</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Analysis</addtitle><date>2016-10</date><risdate>2016</risdate><volume>36</volume><issue>10</issue><spage>1871</spage><epage>1895</epage><pages>1871-1895</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>Measures of sensitivity and uncertainty have become an integral part of risk analysis. Many such measures have a conditional probabilistic structure, for which a straightforward Monte Carlo estimation procedure has a double‐loop form. Recently, a more efficient single‐loop procedure has been introduced, and consistency of this procedure has been demonstrated separately for particular measures, such as those based on variance, density, and information value. In this work, we give a unified proof of single‐loop consistency that applies to any measure satisfying a common rationale. This proof is not only more general but invokes less restrictive assumptions than heretofore in the literature, allowing for the presence of correlations among model inputs and of categorical variables. We examine numerical convergence of such an estimator under a variety of sensitivity measures. We also examine its application to a published medical case study.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>26857789</pmid><doi>10.1111/risa.12555</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2016-10, Vol.36 (10), p.1871-1895
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_1864579161
source Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Analysis
Consistency
Convergence
Density
Estimators
Global sensitivity measures
Mathematical models
Monte Carlo simulation
probabilistic sensitivity analysis
Probability
Risk analysis
Risk assessment
Sensitivity
Sensitivity analysis
Studies
uncertainty analysis
title A Common Rationale for Global Sensitivity Measures and Their Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Common%20Rationale%20for%20Global%20Sensitivity%20Measures%20and%20Their%20Estimation&rft.jtitle=Risk%20analysis&rft.au=Borgonovo,%20Emanuele&rft.date=2016-10&rft.volume=36&rft.issue=10&rft.spage=1871&rft.epage=1895&rft.pages=1871-1895&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.12555&rft_dat=%3Cproquest_cross%3E1850769136%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845474534&rft_id=info:pmid/26857789&rfr_iscdi=true