Multiscale target extraction using a spectral saliency map for a hyperspectral image

With the rapid growth of the capabilities for hyperspectral imagery acquisition, how to efficiently find the significant target in hyperspectral imagery has become a fundamental task for remote-sensing applications. Existing target extraction methods mainly separate targets from background with a th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2016-10, Vol.55 (28), p.8089-8100
Hauptverfasser: Zhang, Jing, Geng, Wenhao, Zhuo, Li, Tian, Qi, Cao, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8100
container_issue 28
container_start_page 8089
container_title Applied Optics
container_volume 55
creator Zhang, Jing
Geng, Wenhao
Zhuo, Li
Tian, Qi
Cao, Yan
description With the rapid growth of the capabilities for hyperspectral imagery acquisition, how to efficiently find the significant target in hyperspectral imagery has become a fundamental task for remote-sensing applications. Existing target extraction methods mainly separate targets from background with a threshold based on pixels and single-scale image information extraction. However, due to the high dimensional characteristics and the complex background of hyperspectral imagery, it is difficult to obtain good extraction results with existing methods. Saliency detection has been a promising topic because saliency features can quickly locate saliency regions from complex backgrounds. Considering the spatial and spectral characteristics of a hyperspectral image, a multiscale target extraction method using a spectral saliency map is proposed for a hyperspectral image, which includes: (1) a spectral saliency model is constructed for detecting spectral saliency map in a hyperspectral image; (2) focus of attention (FOA) as the seed point is competed in the spectral saliency map by the winner-take-all (WTA) network; (3) the multiscale image is segmented by region growing based on the minimum-heterogeneity rule after calculating the heterogeneity of the seed point with its surrounding pixels; (4) the salient target is detected and segmented under the constraint of the spectral saliency map. The experimental results show that the proposed method can effectively improve the accuracy of target extraction for hyperspectral images.
doi_str_mv 10.1364/AO.55.008089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864578368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839117223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-d125cc24e6f833a87761d25f35a2eac36bc3346160697ef65b21f9a17ae4a8003</originalsourceid><addsrcrecordid>eNqNkEtLAzEURoMotlZ3riVLF07NO5llKfUBlW7qOqTpnToyL5MZsP_eSGvXri733sMH50PolpIp5Uo8zlZTKaeEGGLyMzRmVMqMUyXP0ZgQwjOVczlCVzF-pk2KXF-iEdOGGSLyMVq_DVVfRu8qwL0LO-gxfPfB-b5sGzzEstlhh2MHPh0rHF1VQuP3uHYdLtqQfh_7DsIJKGu3g2t0Ubgqws1xTtD702I9f8mWq-fX-WyZec5En20pk94zAaownDujtaJbJgsuHQPnudp4zoWiiqhcQ6HkhtEid1Q7EM4kmwm6P-R2of0aIPa2TipQVa6BdoiWGiWkNlyZf6A8p1QzxhP6cEB9aGMMUNguJK2wt5TY38rtbGWltIfKE353TB42NWxP8F_H_Ae-LXtH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839117223</pqid></control><display><type>article</type><title>Multiscale target extraction using a spectral saliency map for a hyperspectral image</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Zhang, Jing ; Geng, Wenhao ; Zhuo, Li ; Tian, Qi ; Cao, Yan</creator><creatorcontrib>Zhang, Jing ; Geng, Wenhao ; Zhuo, Li ; Tian, Qi ; Cao, Yan</creatorcontrib><description>With the rapid growth of the capabilities for hyperspectral imagery acquisition, how to efficiently find the significant target in hyperspectral imagery has become a fundamental task for remote-sensing applications. Existing target extraction methods mainly separate targets from background with a threshold based on pixels and single-scale image information extraction. However, due to the high dimensional characteristics and the complex background of hyperspectral imagery, it is difficult to obtain good extraction results with existing methods. Saliency detection has been a promising topic because saliency features can quickly locate saliency regions from complex backgrounds. Considering the spatial and spectral characteristics of a hyperspectral image, a multiscale target extraction method using a spectral saliency map is proposed for a hyperspectral image, which includes: (1) a spectral saliency model is constructed for detecting spectral saliency map in a hyperspectral image; (2) focus of attention (FOA) as the seed point is competed in the spectral saliency map by the winner-take-all (WTA) network; (3) the multiscale image is segmented by region growing based on the minimum-heterogeneity rule after calculating the heterogeneity of the seed point with its surrounding pixels; (4) the salient target is detected and segmented under the constraint of the spectral saliency map. The experimental results show that the proposed method can effectively improve the accuracy of target extraction for hyperspectral images.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.55.008089</identifier><identifier>PMID: 27828049</identifier><language>eng</language><publisher>United States</publisher><subject>Extraction ; Heterogeneity ; Hyperspectral imaging ; Image acquisition ; Multiscale methods ; Pixels ; Seeds ; Spectra</subject><ispartof>Applied Optics, 2016-10, Vol.55 (28), p.8089-8100</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-d125cc24e6f833a87761d25f35a2eac36bc3346160697ef65b21f9a17ae4a8003</citedby><cites>FETCH-LOGICAL-c324t-d125cc24e6f833a87761d25f35a2eac36bc3346160697ef65b21f9a17ae4a8003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27828049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Geng, Wenhao</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Cao, Yan</creatorcontrib><title>Multiscale target extraction using a spectral saliency map for a hyperspectral image</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>With the rapid growth of the capabilities for hyperspectral imagery acquisition, how to efficiently find the significant target in hyperspectral imagery has become a fundamental task for remote-sensing applications. Existing target extraction methods mainly separate targets from background with a threshold based on pixels and single-scale image information extraction. However, due to the high dimensional characteristics and the complex background of hyperspectral imagery, it is difficult to obtain good extraction results with existing methods. Saliency detection has been a promising topic because saliency features can quickly locate saliency regions from complex backgrounds. Considering the spatial and spectral characteristics of a hyperspectral image, a multiscale target extraction method using a spectral saliency map is proposed for a hyperspectral image, which includes: (1) a spectral saliency model is constructed for detecting spectral saliency map in a hyperspectral image; (2) focus of attention (FOA) as the seed point is competed in the spectral saliency map by the winner-take-all (WTA) network; (3) the multiscale image is segmented by region growing based on the minimum-heterogeneity rule after calculating the heterogeneity of the seed point with its surrounding pixels; (4) the salient target is detected and segmented under the constraint of the spectral saliency map. The experimental results show that the proposed method can effectively improve the accuracy of target extraction for hyperspectral images.</description><subject>Extraction</subject><subject>Heterogeneity</subject><subject>Hyperspectral imaging</subject><subject>Image acquisition</subject><subject>Multiscale methods</subject><subject>Pixels</subject><subject>Seeds</subject><subject>Spectra</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEURoMotlZ3riVLF07NO5llKfUBlW7qOqTpnToyL5MZsP_eSGvXri733sMH50PolpIp5Uo8zlZTKaeEGGLyMzRmVMqMUyXP0ZgQwjOVczlCVzF-pk2KXF-iEdOGGSLyMVq_DVVfRu8qwL0LO-gxfPfB-b5sGzzEstlhh2MHPh0rHF1VQuP3uHYdLtqQfh_7DsIJKGu3g2t0Ubgqws1xTtD702I9f8mWq-fX-WyZec5En20pk94zAaownDujtaJbJgsuHQPnudp4zoWiiqhcQ6HkhtEid1Q7EM4kmwm6P-R2of0aIPa2TipQVa6BdoiWGiWkNlyZf6A8p1QzxhP6cEB9aGMMUNguJK2wt5TY38rtbGWltIfKE353TB42NWxP8F_H_Ae-LXtH</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhang, Jing</creator><creator>Geng, Wenhao</creator><creator>Zhuo, Li</creator><creator>Tian, Qi</creator><creator>Cao, Yan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161001</creationdate><title>Multiscale target extraction using a spectral saliency map for a hyperspectral image</title><author>Zhang, Jing ; Geng, Wenhao ; Zhuo, Li ; Tian, Qi ; Cao, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-d125cc24e6f833a87761d25f35a2eac36bc3346160697ef65b21f9a17ae4a8003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Extraction</topic><topic>Heterogeneity</topic><topic>Hyperspectral imaging</topic><topic>Image acquisition</topic><topic>Multiscale methods</topic><topic>Pixels</topic><topic>Seeds</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Geng, Wenhao</creatorcontrib><creatorcontrib>Zhuo, Li</creatorcontrib><creatorcontrib>Tian, Qi</creatorcontrib><creatorcontrib>Cao, Yan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Geng, Wenhao</au><au>Zhuo, Li</au><au>Tian, Qi</au><au>Cao, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale target extraction using a spectral saliency map for a hyperspectral image</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>55</volume><issue>28</issue><spage>8089</spage><epage>8100</epage><pages>8089-8100</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>With the rapid growth of the capabilities for hyperspectral imagery acquisition, how to efficiently find the significant target in hyperspectral imagery has become a fundamental task for remote-sensing applications. Existing target extraction methods mainly separate targets from background with a threshold based on pixels and single-scale image information extraction. However, due to the high dimensional characteristics and the complex background of hyperspectral imagery, it is difficult to obtain good extraction results with existing methods. Saliency detection has been a promising topic because saliency features can quickly locate saliency regions from complex backgrounds. Considering the spatial and spectral characteristics of a hyperspectral image, a multiscale target extraction method using a spectral saliency map is proposed for a hyperspectral image, which includes: (1) a spectral saliency model is constructed for detecting spectral saliency map in a hyperspectral image; (2) focus of attention (FOA) as the seed point is competed in the spectral saliency map by the winner-take-all (WTA) network; (3) the multiscale image is segmented by region growing based on the minimum-heterogeneity rule after calculating the heterogeneity of the seed point with its surrounding pixels; (4) the salient target is detected and segmented under the constraint of the spectral saliency map. The experimental results show that the proposed method can effectively improve the accuracy of target extraction for hyperspectral images.</abstract><cop>United States</cop><pmid>27828049</pmid><doi>10.1364/AO.55.008089</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2016-10, Vol.55 (28), p.8089-8100
issn 0003-6935
1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_1864578368
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Extraction
Heterogeneity
Hyperspectral imaging
Image acquisition
Multiscale methods
Pixels
Seeds
Spectra
title Multiscale target extraction using a spectral saliency map for a hyperspectral image
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20target%20extraction%20using%20a%20spectral%20saliency%20map%20for%20a%20hyperspectral%20image&rft.jtitle=Applied%20Optics&rft.au=Zhang,%20Jing&rft.date=2016-10-01&rft.volume=55&rft.issue=28&rft.spage=8089&rft.epage=8100&rft.pages=8089-8100&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.55.008089&rft_dat=%3Cproquest_cross%3E1839117223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1839117223&rft_id=info:pmid/27828049&rfr_iscdi=true