Supercurrent in a room-temperature Bose–Einstein magnon condensate
A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent i...
Gespeichert in:
Veröffentlicht in: | Nature physics 2016-11, Vol.12 (11), p.1057-1062 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1062 |
---|---|
container_issue | 11 |
container_start_page | 1057 |
container_title | Nature physics |
container_volume | 12 |
creator | Bozhko, Dmytro A. Serga, Alexander A. Clausen, Peter Vasyuchka, Vitaliy I. Heussner, Frank Melkov, Gennadii A. Pomyalov, Anna L’vov, Victor S. Hillebrands, Burkard |
description | A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions.
Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature. |
doi_str_mv | 10.1038/nphys3838 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864578248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864578248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</originalsourceid><addsrcrecordid>eNpl0M1KxDAQAOAgCq6rB9-g4EWFatOkaXLUdf2BBQ_quUzT6dplm9SkPezNd_ANfRIjlUX0NMPwMX-EHNPkgiZMXprudeOZZHKHTGjOszjlku5u85ztkwPvV0nCU0HZhNw8DR06PTiHpo8aE0HkrG3jHttQh35wGF1bj5_vH_PG-B4DaWFprIm0NRUaDz0ekr0a1h6PfuKUvNzOn2f38eLx7mF2tYg1S7M-pjXoDCsUOZSpFsDLWlW6glCFOi8zoVQiAGsoqeIa05RJipwrgaKimaJsSk7Hvp2zbwP6vmgbr3G9BoN28AWVgme5DCcHevKHruzgTNguKBZGSZGroM5GpZ313mFddK5pwW0KmhTf_yy2_wz2fLQ-GLNE96vjP_wFSlx5lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835698679</pqid></control><display><type>article</type><title>Supercurrent in a room-temperature Bose–Einstein magnon condensate</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Bozhko, Dmytro A. ; Serga, Alexander A. ; Clausen, Peter ; Vasyuchka, Vitaliy I. ; Heussner, Frank ; Melkov, Gennadii A. ; Pomyalov, Anna ; L’vov, Victor S. ; Hillebrands, Burkard</creator><creatorcontrib>Bozhko, Dmytro A. ; Serga, Alexander A. ; Clausen, Peter ; Vasyuchka, Vitaliy I. ; Heussner, Frank ; Melkov, Gennadii A. ; Pomyalov, Anna ; L’vov, Victor S. ; Hillebrands, Burkard</creatorcontrib><description>A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions.
Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2791 ; 639/766/119/2793 ; 639/766/119/997 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensates ; Condensed Matter Physics ; Density ; Electric currents ; Evolution ; Heating ; Laser beam heating ; Light scattering ; Magnons ; Materials science ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Spectroscopy ; Spin waves ; Superconductivity ; Theoretical ; Wavefunctions</subject><ispartof>Nature physics, 2016-11, Vol.12 (11), p.1057-1062</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</citedby><cites>FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</cites><orcidid>0000-0001-8910-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3838$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3838$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Serga, Alexander A.</creatorcontrib><creatorcontrib>Clausen, Peter</creatorcontrib><creatorcontrib>Vasyuchka, Vitaliy I.</creatorcontrib><creatorcontrib>Heussner, Frank</creatorcontrib><creatorcontrib>Melkov, Gennadii A.</creatorcontrib><creatorcontrib>Pomyalov, Anna</creatorcontrib><creatorcontrib>L’vov, Victor S.</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><title>Supercurrent in a room-temperature Bose–Einstein magnon condensate</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions.
Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.</description><subject>639/766/119/2791</subject><subject>639/766/119/2793</subject><subject>639/766/119/997</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Electric currents</subject><subject>Evolution</subject><subject>Heating</subject><subject>Laser beam heating</subject><subject>Light scattering</subject><subject>Magnons</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Spectroscopy</subject><subject>Spin waves</subject><subject>Superconductivity</subject><subject>Theoretical</subject><subject>Wavefunctions</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0M1KxDAQAOAgCq6rB9-g4EWFatOkaXLUdf2BBQ_quUzT6dplm9SkPezNd_ANfRIjlUX0NMPwMX-EHNPkgiZMXprudeOZZHKHTGjOszjlku5u85ztkwPvV0nCU0HZhNw8DR06PTiHpo8aE0HkrG3jHttQh35wGF1bj5_vH_PG-B4DaWFprIm0NRUaDz0ekr0a1h6PfuKUvNzOn2f38eLx7mF2tYg1S7M-pjXoDCsUOZSpFsDLWlW6glCFOi8zoVQiAGsoqeIa05RJipwrgaKimaJsSk7Hvp2zbwP6vmgbr3G9BoN28AWVgme5DCcHevKHruzgTNguKBZGSZGroM5GpZ313mFddK5pwW0KmhTf_yy2_wz2fLQ-GLNE96vjP_wFSlx5lw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Bozhko, Dmytro A.</creator><creator>Serga, Alexander A.</creator><creator>Clausen, Peter</creator><creator>Vasyuchka, Vitaliy I.</creator><creator>Heussner, Frank</creator><creator>Melkov, Gennadii A.</creator><creator>Pomyalov, Anna</creator><creator>L’vov, Victor S.</creator><creator>Hillebrands, Burkard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8910-0355</orcidid></search><sort><creationdate>20161101</creationdate><title>Supercurrent in a room-temperature Bose–Einstein magnon condensate</title><author>Bozhko, Dmytro A. ; Serga, Alexander A. ; Clausen, Peter ; Vasyuchka, Vitaliy I. ; Heussner, Frank ; Melkov, Gennadii A. ; Pomyalov, Anna ; L’vov, Victor S. ; Hillebrands, Burkard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/119/2791</topic><topic>639/766/119/2793</topic><topic>639/766/119/997</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Electric currents</topic><topic>Evolution</topic><topic>Heating</topic><topic>Laser beam heating</topic><topic>Light scattering</topic><topic>Magnons</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Spectroscopy</topic><topic>Spin waves</topic><topic>Superconductivity</topic><topic>Theoretical</topic><topic>Wavefunctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Serga, Alexander A.</creatorcontrib><creatorcontrib>Clausen, Peter</creatorcontrib><creatorcontrib>Vasyuchka, Vitaliy I.</creatorcontrib><creatorcontrib>Heussner, Frank</creatorcontrib><creatorcontrib>Melkov, Gennadii A.</creatorcontrib><creatorcontrib>Pomyalov, Anna</creatorcontrib><creatorcontrib>L’vov, Victor S.</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozhko, Dmytro A.</au><au>Serga, Alexander A.</au><au>Clausen, Peter</au><au>Vasyuchka, Vitaliy I.</au><au>Heussner, Frank</au><au>Melkov, Gennadii A.</au><au>Pomyalov, Anna</au><au>L’vov, Victor S.</au><au>Hillebrands, Burkard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercurrent in a room-temperature Bose–Einstein magnon condensate</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>12</volume><issue>11</issue><spage>1057</spage><epage>1062</epage><pages>1057-1062</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions.
Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3838</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8910-0355</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2016-11, Vol.12 (11), p.1057-1062 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864578248 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/766/119/2791 639/766/119/2793 639/766/119/997 Atomic Classical and Continuum Physics Complex Systems Condensates Condensed Matter Physics Density Electric currents Evolution Heating Laser beam heating Light scattering Magnons Materials science Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Spectroscopy Spin waves Superconductivity Theoretical Wavefunctions |
title | Supercurrent in a room-temperature Bose–Einstein magnon condensate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercurrent%20in%20a%20room-temperature%20Bose%E2%80%93Einstein%20magnon%20condensate&rft.jtitle=Nature%20physics&rft.au=Bozhko,%20Dmytro%20A.&rft.date=2016-11-01&rft.volume=12&rft.issue=11&rft.spage=1057&rft.epage=1062&rft.pages=1057-1062&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3838&rft_dat=%3Cproquest_cross%3E1864578248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835698679&rft_id=info:pmid/&rfr_iscdi=true |