Supercurrent in a room-temperature Bose–Einstein magnon condensate

A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2016-11, Vol.12 (11), p.1057-1062
Hauptverfasser: Bozhko, Dmytro A., Serga, Alexander A., Clausen, Peter, Vasyuchka, Vitaliy I., Heussner, Frank, Melkov, Gennadii A., Pomyalov, Anna, L’vov, Victor S., Hillebrands, Burkard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1062
container_issue 11
container_start_page 1057
container_title Nature physics
container_volume 12
creator Bozhko, Dmytro A.
Serga, Alexander A.
Clausen, Peter
Vasyuchka, Vitaliy I.
Heussner, Frank
Melkov, Gennadii A.
Pomyalov, Anna
L’vov, Victor S.
Hillebrands, Burkard
description A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions. Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.
doi_str_mv 10.1038/nphys3838
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864578248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864578248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</originalsourceid><addsrcrecordid>eNpl0M1KxDAQAOAgCq6rB9-g4EWFatOkaXLUdf2BBQ_quUzT6dplm9SkPezNd_ANfRIjlUX0NMPwMX-EHNPkgiZMXprudeOZZHKHTGjOszjlku5u85ztkwPvV0nCU0HZhNw8DR06PTiHpo8aE0HkrG3jHttQh35wGF1bj5_vH_PG-B4DaWFprIm0NRUaDz0ekr0a1h6PfuKUvNzOn2f38eLx7mF2tYg1S7M-pjXoDCsUOZSpFsDLWlW6glCFOi8zoVQiAGsoqeIa05RJipwrgaKimaJsSk7Hvp2zbwP6vmgbr3G9BoN28AWVgme5DCcHevKHruzgTNguKBZGSZGroM5GpZ313mFddK5pwW0KmhTf_yy2_wz2fLQ-GLNE96vjP_wFSlx5lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835698679</pqid></control><display><type>article</type><title>Supercurrent in a room-temperature Bose–Einstein magnon condensate</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Bozhko, Dmytro A. ; Serga, Alexander A. ; Clausen, Peter ; Vasyuchka, Vitaliy I. ; Heussner, Frank ; Melkov, Gennadii A. ; Pomyalov, Anna ; L’vov, Victor S. ; Hillebrands, Burkard</creator><creatorcontrib>Bozhko, Dmytro A. ; Serga, Alexander A. ; Clausen, Peter ; Vasyuchka, Vitaliy I. ; Heussner, Frank ; Melkov, Gennadii A. ; Pomyalov, Anna ; L’vov, Victor S. ; Hillebrands, Burkard</creatorcontrib><description>A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions. Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/2791 ; 639/766/119/2793 ; 639/766/119/997 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensates ; Condensed Matter Physics ; Density ; Electric currents ; Evolution ; Heating ; Laser beam heating ; Light scattering ; Magnons ; Materials science ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Spectroscopy ; Spin waves ; Superconductivity ; Theoretical ; Wavefunctions</subject><ispartof>Nature physics, 2016-11, Vol.12 (11), p.1057-1062</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</citedby><cites>FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</cites><orcidid>0000-0001-8910-0355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3838$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3838$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Serga, Alexander A.</creatorcontrib><creatorcontrib>Clausen, Peter</creatorcontrib><creatorcontrib>Vasyuchka, Vitaliy I.</creatorcontrib><creatorcontrib>Heussner, Frank</creatorcontrib><creatorcontrib>Melkov, Gennadii A.</creatorcontrib><creatorcontrib>Pomyalov, Anna</creatorcontrib><creatorcontrib>L’vov, Victor S.</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><title>Supercurrent in a room-temperature Bose–Einstein magnon condensate</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions. Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.</description><subject>639/766/119/2791</subject><subject>639/766/119/2793</subject><subject>639/766/119/997</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensed Matter Physics</subject><subject>Density</subject><subject>Electric currents</subject><subject>Evolution</subject><subject>Heating</subject><subject>Laser beam heating</subject><subject>Light scattering</subject><subject>Magnons</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Spectroscopy</subject><subject>Spin waves</subject><subject>Superconductivity</subject><subject>Theoretical</subject><subject>Wavefunctions</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0M1KxDAQAOAgCq6rB9-g4EWFatOkaXLUdf2BBQ_quUzT6dplm9SkPezNd_ANfRIjlUX0NMPwMX-EHNPkgiZMXprudeOZZHKHTGjOszjlku5u85ztkwPvV0nCU0HZhNw8DR06PTiHpo8aE0HkrG3jHttQh35wGF1bj5_vH_PG-B4DaWFprIm0NRUaDz0ekr0a1h6PfuKUvNzOn2f38eLx7mF2tYg1S7M-pjXoDCsUOZSpFsDLWlW6glCFOi8zoVQiAGsoqeIa05RJipwrgaKimaJsSk7Hvp2zbwP6vmgbr3G9BoN28AWVgme5DCcHevKHruzgTNguKBZGSZGroM5GpZ313mFddK5pwW0KmhTf_yy2_wz2fLQ-GLNE96vjP_wFSlx5lw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Bozhko, Dmytro A.</creator><creator>Serga, Alexander A.</creator><creator>Clausen, Peter</creator><creator>Vasyuchka, Vitaliy I.</creator><creator>Heussner, Frank</creator><creator>Melkov, Gennadii A.</creator><creator>Pomyalov, Anna</creator><creator>L’vov, Victor S.</creator><creator>Hillebrands, Burkard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8910-0355</orcidid></search><sort><creationdate>20161101</creationdate><title>Supercurrent in a room-temperature Bose–Einstein magnon condensate</title><author>Bozhko, Dmytro A. ; Serga, Alexander A. ; Clausen, Peter ; Vasyuchka, Vitaliy I. ; Heussner, Frank ; Melkov, Gennadii A. ; Pomyalov, Anna ; L’vov, Victor S. ; Hillebrands, Burkard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-1fac5ede67ab2c6a4bf9dcdaac5af7b569906aefab194ce22381e4496e6d15913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/766/119/2791</topic><topic>639/766/119/2793</topic><topic>639/766/119/997</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensed Matter Physics</topic><topic>Density</topic><topic>Electric currents</topic><topic>Evolution</topic><topic>Heating</topic><topic>Laser beam heating</topic><topic>Light scattering</topic><topic>Magnons</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Spectroscopy</topic><topic>Spin waves</topic><topic>Superconductivity</topic><topic>Theoretical</topic><topic>Wavefunctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bozhko, Dmytro A.</creatorcontrib><creatorcontrib>Serga, Alexander A.</creatorcontrib><creatorcontrib>Clausen, Peter</creatorcontrib><creatorcontrib>Vasyuchka, Vitaliy I.</creatorcontrib><creatorcontrib>Heussner, Frank</creatorcontrib><creatorcontrib>Melkov, Gennadii A.</creatorcontrib><creatorcontrib>Pomyalov, Anna</creatorcontrib><creatorcontrib>L’vov, Victor S.</creatorcontrib><creatorcontrib>Hillebrands, Burkard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bozhko, Dmytro A.</au><au>Serga, Alexander A.</au><au>Clausen, Peter</au><au>Vasyuchka, Vitaliy I.</au><au>Heussner, Frank</au><au>Melkov, Gennadii A.</au><au>Pomyalov, Anna</au><au>L’vov, Victor S.</au><au>Hillebrands, Burkard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercurrent in a room-temperature Bose–Einstein magnon condensate</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>12</volume><issue>11</issue><spage>1057</spage><epage>1062</epage><pages>1057-1062</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>A supercurrent is a macroscopic effect of a phase-induced collective motion of a quantum condensate. So far, experimentally observed supercurrent phenomena such as superconductivity and superfluidity have been restricted to cryogenic temperatures. Here, we report on the discovery of a supercurrent in a Bose–Einstein magnon condensate prepared in a room-temperature ferrimagnetic film. The magnon condensate is formed in a parametrically pumped magnon gas and is subject to a thermal gradient created by local laser heating of the film. The appearance of the supercurrent, which is driven by a thermally induced phase shift in the condensate wavefunction, is evidenced by analysis of the temporal evolution of the magnon density measured by means of Brillouin light scattering spectroscopy. Our findings offer opportunities for the investigation of room-temperature macroscopic quantum phenomena and their potential applications at ambient conditions. Studies of supercurrent phenomena, such as superconductivity and superfluidity, are usually restricted to cryogenic temperatures, but evidence suggests that a magnon supercurrent can be excited in a Bose–Einstein magnon condensate at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3838</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8910-0355</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2016-11, Vol.12 (11), p.1057-1062
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1864578248
source Springer Nature - Complete Springer Journals; Nature
subjects 639/766/119/2791
639/766/119/2793
639/766/119/997
Atomic
Classical and Continuum Physics
Complex Systems
Condensates
Condensed Matter Physics
Density
Electric currents
Evolution
Heating
Laser beam heating
Light scattering
Magnons
Materials science
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Spectroscopy
Spin waves
Superconductivity
Theoretical
Wavefunctions
title Supercurrent in a room-temperature Bose–Einstein magnon condensate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercurrent%20in%20a%20room-temperature%20Bose%E2%80%93Einstein%20magnon%20condensate&rft.jtitle=Nature%20physics&rft.au=Bozhko,%20Dmytro%20A.&rft.date=2016-11-01&rft.volume=12&rft.issue=11&rft.spage=1057&rft.epage=1062&rft.pages=1057-1062&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3838&rft_dat=%3Cproquest_cross%3E1864578248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835698679&rft_id=info:pmid/&rfr_iscdi=true