Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)
Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comp...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2016-10, Vol.121 (10), p.7024-7039 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7039 |
---|---|
container_issue | 10 |
container_start_page | 7024 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 121 |
creator | Jaqueto, Plinio Trindade, Ricardo I. F. Hartmann, Gelvam A. Novello, Valdir F. Cruz, Francisco W. Karmann, Ivo Strauss, Becky E. Feinberg, Joshua M. |
description | Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave.
Key Points
First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem
Magnetic mineral retention in tropical karst soil depends mostly on plant cover
Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave |
doi_str_mv | 10.1002/2016JB013541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864577675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1850779994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</originalsourceid><addsrcrecordid>eNqN0UtLw0AQAOAgCpbamz9gwYMVjO5m38e2aLUUFK3nsNlM2q151Gyi9N8bqYh4KM5lht2PGYYJglOCrwjG0XWEiZiNMaGckYOgFxGhQ025OPypCT0OBt6vcReqeyKsFyzmrnx15RL5DeRQNSsokClT5CuXo8IsS2icL5ArUfeFHk2L0vNRvqqQNe-AhhbKpjY5eq7aZoVGBdTOmouT4CgzuYfBd-4HL7c3i8ldOH-Y3k9G89BwSmmoOeFKU5baSDCZpopQMDpTKs2kAs0SDWAVpFQbLLlKICGJUEzbyGYpo0D7wXDXd1NXby34Ji6ct5DnpoSq9TFRgnEpheT_oBxLqbVmHT37Q9dVW5fdIjHRmGmBORV7lWIcR0Ri2qnLnbJ15X0NWbypXWHqbUxw_HW2-PfZOk53_MPlsN1r49n0acyJ6oZ8AtU6lQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845021703</pqid></control><display><type>article</type><title>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jaqueto, Plinio ; Trindade, Ricardo I. F. ; Hartmann, Gelvam A. ; Novello, Valdir F. ; Cruz, Francisco W. ; Karmann, Ivo ; Strauss, Becky E. ; Feinberg, Joshua M.</creator><creatorcontrib>Jaqueto, Plinio ; Trindade, Ricardo I. F. ; Hartmann, Gelvam A. ; Novello, Valdir F. ; Cruz, Francisco W. ; Karmann, Ivo ; Strauss, Becky E. ; Feinberg, Joshua M.</creatorcontrib><description>Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave.
Key Points
First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem
Magnetic mineral retention in tropical karst soil depends mostly on plant cover
Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2016JB013541</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Carbon 13 ; Carbon isotopes ; Caves ; Climate control ; Dry periods ; Dynamical systems ; Dynamics ; environmental magnetism ; Erosion ; Erosion control ; Fluxes ; Geophysics ; Goethite ; Grain size ; Growth rate ; High resolution ; Hysteresis ; Hysteresis loops ; Isotopes ; Karst ; Low temperature ; Magnetic fields ; Magnetic studies ; Magnetism ; Magnetite ; Magnetization ; Minerals ; Oxygen ; paleoclimate ; Paleoprecipitation ; Plant cover ; Remanence ; Remanent magnetization ; Resolution ; Sediment ; Sediments ; Soil ; Soil dynamics ; Soil erosion ; Soils ; South America ; speleothem ; Superconductivity ; Temperature ; Temperature effects ; Vegetation ; Vegetation cover</subject><ispartof>Journal of geophysical research. Solid earth, 2016-10, Vol.121 (10), p.7024-7039</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</citedby><cites>FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</cites><orcidid>0000-0002-5845-9848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JB013541$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JB013541$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids></links><search><creatorcontrib>Jaqueto, Plinio</creatorcontrib><creatorcontrib>Trindade, Ricardo I. F.</creatorcontrib><creatorcontrib>Hartmann, Gelvam A.</creatorcontrib><creatorcontrib>Novello, Valdir F.</creatorcontrib><creatorcontrib>Cruz, Francisco W.</creatorcontrib><creatorcontrib>Karmann, Ivo</creatorcontrib><creatorcontrib>Strauss, Becky E.</creatorcontrib><creatorcontrib>Feinberg, Joshua M.</creatorcontrib><title>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</title><title>Journal of geophysical research. Solid earth</title><description>Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave.
Key Points
First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem
Magnetic mineral retention in tropical karst soil depends mostly on plant cover
Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave</description><subject>Carbon 13</subject><subject>Carbon isotopes</subject><subject>Caves</subject><subject>Climate control</subject><subject>Dry periods</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>environmental magnetism</subject><subject>Erosion</subject><subject>Erosion control</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Goethite</subject><subject>Grain size</subject><subject>Growth rate</subject><subject>High resolution</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Isotopes</subject><subject>Karst</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetic studies</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetization</subject><subject>Minerals</subject><subject>Oxygen</subject><subject>paleoclimate</subject><subject>Paleoprecipitation</subject><subject>Plant cover</subject><subject>Remanence</subject><subject>Remanent magnetization</subject><subject>Resolution</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soils</subject><subject>South America</subject><subject>speleothem</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AQAOAgCpbamz9gwYMVjO5m38e2aLUUFK3nsNlM2q151Gyi9N8bqYh4KM5lht2PGYYJglOCrwjG0XWEiZiNMaGckYOgFxGhQ025OPypCT0OBt6vcReqeyKsFyzmrnx15RL5DeRQNSsokClT5CuXo8IsS2icL5ArUfeFHk2L0vNRvqqQNe-AhhbKpjY5eq7aZoVGBdTOmouT4CgzuYfBd-4HL7c3i8ldOH-Y3k9G89BwSmmoOeFKU5baSDCZpopQMDpTKs2kAs0SDWAVpFQbLLlKICGJUEzbyGYpo0D7wXDXd1NXby34Ji6ct5DnpoSq9TFRgnEpheT_oBxLqbVmHT37Q9dVW5fdIjHRmGmBORV7lWIcR0Ri2qnLnbJ15X0NWbypXWHqbUxw_HW2-PfZOk53_MPlsN1r49n0acyJ6oZ8AtU6lQ0</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Jaqueto, Plinio</creator><creator>Trindade, Ricardo I. F.</creator><creator>Hartmann, Gelvam A.</creator><creator>Novello, Valdir F.</creator><creator>Cruz, Francisco W.</creator><creator>Karmann, Ivo</creator><creator>Strauss, Becky E.</creator><creator>Feinberg, Joshua M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5845-9848</orcidid></search><sort><creationdate>201610</creationdate><title>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</title><author>Jaqueto, Plinio ; Trindade, Ricardo I. F. ; Hartmann, Gelvam A. ; Novello, Valdir F. ; Cruz, Francisco W. ; Karmann, Ivo ; Strauss, Becky E. ; Feinberg, Joshua M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon 13</topic><topic>Carbon isotopes</topic><topic>Caves</topic><topic>Climate control</topic><topic>Dry periods</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>environmental magnetism</topic><topic>Erosion</topic><topic>Erosion control</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Goethite</topic><topic>Grain size</topic><topic>Growth rate</topic><topic>High resolution</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Isotopes</topic><topic>Karst</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetic studies</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetization</topic><topic>Minerals</topic><topic>Oxygen</topic><topic>paleoclimate</topic><topic>Paleoprecipitation</topic><topic>Plant cover</topic><topic>Remanence</topic><topic>Remanent magnetization</topic><topic>Resolution</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soils</topic><topic>South America</topic><topic>speleothem</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaqueto, Plinio</creatorcontrib><creatorcontrib>Trindade, Ricardo I. F.</creatorcontrib><creatorcontrib>Hartmann, Gelvam A.</creatorcontrib><creatorcontrib>Novello, Valdir F.</creatorcontrib><creatorcontrib>Cruz, Francisco W.</creatorcontrib><creatorcontrib>Karmann, Ivo</creatorcontrib><creatorcontrib>Strauss, Becky E.</creatorcontrib><creatorcontrib>Feinberg, Joshua M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaqueto, Plinio</au><au>Trindade, Ricardo I. F.</au><au>Hartmann, Gelvam A.</au><au>Novello, Valdir F.</au><au>Cruz, Francisco W.</au><au>Karmann, Ivo</au><au>Strauss, Becky E.</au><au>Feinberg, Joshua M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2016-10</date><risdate>2016</risdate><volume>121</volume><issue>10</issue><spage>7024</spage><epage>7039</epage><pages>7024-7039</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave.
Key Points
First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem
Magnetic mineral retention in tropical karst soil depends mostly on plant cover
Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JB013541</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5845-9848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2016-10, Vol.121 (10), p.7024-7039 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864577675 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Carbon 13 Carbon isotopes Caves Climate control Dry periods Dynamical systems Dynamics environmental magnetism Erosion Erosion control Fluxes Geophysics Goethite Grain size Growth rate High resolution Hysteresis Hysteresis loops Isotopes Karst Low temperature Magnetic fields Magnetic studies Magnetism Magnetite Magnetization Minerals Oxygen paleoclimate Paleoprecipitation Plant cover Remanence Remanent magnetization Resolution Sediment Sediments Soil Soil dynamics Soil erosion Soils South America speleothem Superconductivity Temperature Temperature effects Vegetation Vegetation cover |
title | Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20speleothem%20and%20soil%20magnetism%20in%20the%20Pau%20d'Alho%20cave%20(central%20South%20America)&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Jaqueto,%20Plinio&rft.date=2016-10&rft.volume=121&rft.issue=10&rft.spage=7024&rft.epage=7039&rft.pages=7024-7039&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2016JB013541&rft_dat=%3Cproquest_cross%3E1850779994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845021703&rft_id=info:pmid/&rfr_iscdi=true |