Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)

Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2016-10, Vol.121 (10), p.7024-7039
Hauptverfasser: Jaqueto, Plinio, Trindade, Ricardo I. F., Hartmann, Gelvam A., Novello, Valdir F., Cruz, Francisco W., Karmann, Ivo, Strauss, Becky E., Feinberg, Joshua M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7039
container_issue 10
container_start_page 7024
container_title Journal of geophysical research. Solid earth
container_volume 121
creator Jaqueto, Plinio
Trindade, Ricardo I. F.
Hartmann, Gelvam A.
Novello, Valdir F.
Cruz, Francisco W.
Karmann, Ivo
Strauss, Becky E.
Feinberg, Joshua M.
description Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave. Key Points First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem Magnetic mineral retention in tropical karst soil depends mostly on plant cover Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave
doi_str_mv 10.1002/2016JB013541
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864577675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1850779994</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</originalsourceid><addsrcrecordid>eNqN0UtLw0AQAOAgCpbamz9gwYMVjO5m38e2aLUUFK3nsNlM2q151Gyi9N8bqYh4KM5lht2PGYYJglOCrwjG0XWEiZiNMaGckYOgFxGhQ025OPypCT0OBt6vcReqeyKsFyzmrnx15RL5DeRQNSsokClT5CuXo8IsS2icL5ArUfeFHk2L0vNRvqqQNe-AhhbKpjY5eq7aZoVGBdTOmouT4CgzuYfBd-4HL7c3i8ldOH-Y3k9G89BwSmmoOeFKU5baSDCZpopQMDpTKs2kAs0SDWAVpFQbLLlKICGJUEzbyGYpo0D7wXDXd1NXby34Ji6ct5DnpoSq9TFRgnEpheT_oBxLqbVmHT37Q9dVW5fdIjHRmGmBORV7lWIcR0Ri2qnLnbJ15X0NWbypXWHqbUxw_HW2-PfZOk53_MPlsN1r49n0acyJ6oZ8AtU6lQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845021703</pqid></control><display><type>article</type><title>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jaqueto, Plinio ; Trindade, Ricardo I. F. ; Hartmann, Gelvam A. ; Novello, Valdir F. ; Cruz, Francisco W. ; Karmann, Ivo ; Strauss, Becky E. ; Feinberg, Joshua M.</creator><creatorcontrib>Jaqueto, Plinio ; Trindade, Ricardo I. F. ; Hartmann, Gelvam A. ; Novello, Valdir F. ; Cruz, Francisco W. ; Karmann, Ivo ; Strauss, Becky E. ; Feinberg, Joshua M.</creatorcontrib><description>Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave. Key Points First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem Magnetic mineral retention in tropical karst soil depends mostly on plant cover Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2016JB013541</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Carbon 13 ; Carbon isotopes ; Caves ; Climate control ; Dry periods ; Dynamical systems ; Dynamics ; environmental magnetism ; Erosion ; Erosion control ; Fluxes ; Geophysics ; Goethite ; Grain size ; Growth rate ; High resolution ; Hysteresis ; Hysteresis loops ; Isotopes ; Karst ; Low temperature ; Magnetic fields ; Magnetic studies ; Magnetism ; Magnetite ; Magnetization ; Minerals ; Oxygen ; paleoclimate ; Paleoprecipitation ; Plant cover ; Remanence ; Remanent magnetization ; Resolution ; Sediment ; Sediments ; Soil ; Soil dynamics ; Soil erosion ; Soils ; South America ; speleothem ; Superconductivity ; Temperature ; Temperature effects ; Vegetation ; Vegetation cover</subject><ispartof>Journal of geophysical research. Solid earth, 2016-10, Vol.121 (10), p.7024-7039</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</citedby><cites>FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</cites><orcidid>0000-0002-5845-9848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JB013541$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JB013541$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids></links><search><creatorcontrib>Jaqueto, Plinio</creatorcontrib><creatorcontrib>Trindade, Ricardo I. F.</creatorcontrib><creatorcontrib>Hartmann, Gelvam A.</creatorcontrib><creatorcontrib>Novello, Valdir F.</creatorcontrib><creatorcontrib>Cruz, Francisco W.</creatorcontrib><creatorcontrib>Karmann, Ivo</creatorcontrib><creatorcontrib>Strauss, Becky E.</creatorcontrib><creatorcontrib>Feinberg, Joshua M.</creatorcontrib><title>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</title><title>Journal of geophysical research. Solid earth</title><description>Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave. Key Points First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem Magnetic mineral retention in tropical karst soil depends mostly on plant cover Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave</description><subject>Carbon 13</subject><subject>Carbon isotopes</subject><subject>Caves</subject><subject>Climate control</subject><subject>Dry periods</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>environmental magnetism</subject><subject>Erosion</subject><subject>Erosion control</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Goethite</subject><subject>Grain size</subject><subject>Growth rate</subject><subject>High resolution</subject><subject>Hysteresis</subject><subject>Hysteresis loops</subject><subject>Isotopes</subject><subject>Karst</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetic studies</subject><subject>Magnetism</subject><subject>Magnetite</subject><subject>Magnetization</subject><subject>Minerals</subject><subject>Oxygen</subject><subject>paleoclimate</subject><subject>Paleoprecipitation</subject><subject>Plant cover</subject><subject>Remanence</subject><subject>Remanent magnetization</subject><subject>Resolution</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soils</subject><subject>South America</subject><subject>speleothem</subject><subject>Superconductivity</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UtLw0AQAOAgCpbamz9gwYMVjO5m38e2aLUUFK3nsNlM2q151Gyi9N8bqYh4KM5lht2PGYYJglOCrwjG0XWEiZiNMaGckYOgFxGhQ025OPypCT0OBt6vcReqeyKsFyzmrnx15RL5DeRQNSsokClT5CuXo8IsS2icL5ArUfeFHk2L0vNRvqqQNe-AhhbKpjY5eq7aZoVGBdTOmouT4CgzuYfBd-4HL7c3i8ldOH-Y3k9G89BwSmmoOeFKU5baSDCZpopQMDpTKs2kAs0SDWAVpFQbLLlKICGJUEzbyGYpo0D7wXDXd1NXby34Ji6ct5DnpoSq9TFRgnEpheT_oBxLqbVmHT37Q9dVW5fdIjHRmGmBORV7lWIcR0Ri2qnLnbJ15X0NWbypXWHqbUxw_HW2-PfZOk53_MPlsN1r49n0acyJ6oZ8AtU6lQ0</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Jaqueto, Plinio</creator><creator>Trindade, Ricardo I. F.</creator><creator>Hartmann, Gelvam A.</creator><creator>Novello, Valdir F.</creator><creator>Cruz, Francisco W.</creator><creator>Karmann, Ivo</creator><creator>Strauss, Becky E.</creator><creator>Feinberg, Joshua M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5845-9848</orcidid></search><sort><creationdate>201610</creationdate><title>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</title><author>Jaqueto, Plinio ; Trindade, Ricardo I. F. ; Hartmann, Gelvam A. ; Novello, Valdir F. ; Cruz, Francisco W. ; Karmann, Ivo ; Strauss, Becky E. ; Feinberg, Joshua M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5333-95158934dc2647dd813ea9f88df78e94b9eec8ed39a0758beb1b6849c2cfd43e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon 13</topic><topic>Carbon isotopes</topic><topic>Caves</topic><topic>Climate control</topic><topic>Dry periods</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>environmental magnetism</topic><topic>Erosion</topic><topic>Erosion control</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Goethite</topic><topic>Grain size</topic><topic>Growth rate</topic><topic>High resolution</topic><topic>Hysteresis</topic><topic>Hysteresis loops</topic><topic>Isotopes</topic><topic>Karst</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetic studies</topic><topic>Magnetism</topic><topic>Magnetite</topic><topic>Magnetization</topic><topic>Minerals</topic><topic>Oxygen</topic><topic>paleoclimate</topic><topic>Paleoprecipitation</topic><topic>Plant cover</topic><topic>Remanence</topic><topic>Remanent magnetization</topic><topic>Resolution</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soils</topic><topic>South America</topic><topic>speleothem</topic><topic>Superconductivity</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaqueto, Plinio</creatorcontrib><creatorcontrib>Trindade, Ricardo I. F.</creatorcontrib><creatorcontrib>Hartmann, Gelvam A.</creatorcontrib><creatorcontrib>Novello, Valdir F.</creatorcontrib><creatorcontrib>Cruz, Francisco W.</creatorcontrib><creatorcontrib>Karmann, Ivo</creatorcontrib><creatorcontrib>Strauss, Becky E.</creatorcontrib><creatorcontrib>Feinberg, Joshua M.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaqueto, Plinio</au><au>Trindade, Ricardo I. F.</au><au>Hartmann, Gelvam A.</au><au>Novello, Valdir F.</au><au>Cruz, Francisco W.</au><au>Karmann, Ivo</au><au>Strauss, Becky E.</au><au>Feinberg, Joshua M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2016-10</date><risdate>2016</risdate><volume>121</volume><issue>10</issue><spage>7024</spage><epage>7039</epage><pages>7024-7039</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>Mineral magnetism of Pau d'Alho cave sediments, soils outside the cave, and in the stalagmite #6 (ALHO6) in Midwest Brazil is presented. This high growth‐rate speleothem (~168 mm/ka) encompasses the past 1355 years. Oxygen and carbon isotope data from the same stalagmite allow for a direct comparison of the magnetic signal with changes in paleoprecipitation and soil dynamics at the surface. Magnetic experiments include isothermal remanent magnetization, anhysteretic remanent magnetization, hysteresis loops, first‐order reversal curves, and low‐temperature superconducting quantum interference device magnetometry. The main magnetic remanence carriers in ALHO6 are magnetite and goethite, with a nearly constant relative proportion. Remanent coercivities of magnetite in all our samples are within 14–17 mT for an average grain‐size of ~1–2 µm, in the range of pedogenic magnetite, thus suggesting the detrital grains deposited in the stalagmite were produced in the soil above the cave. Magnetic remanence variations follow δ13C and δ18O data, suggesting a climatic control on the input of magnetic minerals into the Pau d'Alho cave system. The concentration of magnetic minerals in the stalagmite is governed by soil erosion above the cave, which by its turn is controlled by soil erosion and vegetation cover. Dry periods are associated with less stable soils and result in higher mineral fluxes carried into karst systems. Conversely, wetter periods are associated with soils topped by denser vegetation that retains micrometer‐scale pedogenic minerals and thus reduces detrital fluxes into the cave. Key Points First high‐resolution multidecadal to centennial‐scale magnetic study in speleothem Magnetic mineral retention in tropical karst soil depends mostly on plant cover Joint analysis of stalagmite magnetism, C, and O isotopes in a monitored cave</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JB013541</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5845-9848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2016-10, Vol.121 (10), p.7024-7039
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_miscellaneous_1864577675
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Carbon 13
Carbon isotopes
Caves
Climate control
Dry periods
Dynamical systems
Dynamics
environmental magnetism
Erosion
Erosion control
Fluxes
Geophysics
Goethite
Grain size
Growth rate
High resolution
Hysteresis
Hysteresis loops
Isotopes
Karst
Low temperature
Magnetic fields
Magnetic studies
Magnetism
Magnetite
Magnetization
Minerals
Oxygen
paleoclimate
Paleoprecipitation
Plant cover
Remanence
Remanent magnetization
Resolution
Sediment
Sediments
Soil
Soil dynamics
Soil erosion
Soils
South America
speleothem
Superconductivity
Temperature
Temperature effects
Vegetation
Vegetation cover
title Linking speleothem and soil magnetism in the Pau d'Alho cave (central South America)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20speleothem%20and%20soil%20magnetism%20in%20the%20Pau%20d'Alho%20cave%20(central%20South%20America)&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Jaqueto,%20Plinio&rft.date=2016-10&rft.volume=121&rft.issue=10&rft.spage=7024&rft.epage=7039&rft.pages=7024-7039&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2016JB013541&rft_dat=%3Cproquest_cross%3E1850779994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845021703&rft_id=info:pmid/&rfr_iscdi=true