New insights into the complex interplay between drag forces and its thermospheric consequences
Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and visco...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2016-10, Vol.121 (10), p.10,417-10,430 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10,430 |
---|---|
container_issue | 10 |
container_start_page | 10,417 |
container_title | Journal of geophysical research. Space physics |
container_volume | 121 |
creator | Hsu, Vicki W. Thayer, Jeffrey P. Wang, Wenbin Burns, Alan |
description | Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient.
Key Points
Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating
The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure
Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum |
doi_str_mv | 10.1002/2016JA023058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864577474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902536681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhoMoWGpv_oCAFw9GZz-y2RxL0WopCqJXw2YzaVOSbNxNqf33bqiCeBDnMsPL884HEwTnBK4JAL2hQMRiCpRBLI-CESUijVIO9Pi7ZhJOg4lzG_AhvUTiUfD2iLuwal21WvfOF70J-zWG2jRdjR-DgLar1T7Msd8htmFh1SosjdXoQtUWYeVt3mEb4zqfKu29rcP3LbYeOQtOSlU7nHzlcfB6d_syu4-WT_OH2XQZaS4piwqaa5UL5FikGohMaSGkl4jSLJeS6rwsSimEJHmZ8xI4YyzJlRRc6lJLZOPg8tC3s8aPdn3WVE5jXasWzdZlxKNxkvCE_wONIZHARerRi1_oxmxt6w_JSAo0ZsNGf1KSx0CSRAxjrw6UtsY5i2XW2apRdp8RyIYHZj8f6HF2wHdVjfs_2Wwxf57GDAhjnzgAm7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845017764</pqid></control><display><type>article</type><title>New insights into the complex interplay between drag forces and its thermospheric consequences</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Hsu, Vicki W. ; Thayer, Jeffrey P. ; Wang, Wenbin ; Burns, Alan</creator><creatorcontrib>Hsu, Vicki W. ; Thayer, Jeffrey P. ; Wang, Wenbin ; Burns, Alan</creatorcontrib><description>Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient.
Key Points
Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating
The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure
Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2016JA023058</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Adiabatic flow ; Circulation ; Cooling ; Cooling effects ; Drag ; Drag (hindrance) ; Energy budget ; Geomagnetic activity ; Geomagnetism ; Geophysics ; Global temperatures ; Global winds ; Heating ; Ion drag ; Ionosphere ; ion‐neutral coupling ; neutral dynamics ; neutral temperature ; Night ; Pressure gradients ; Resultants ; Shedding ; Solar cycle ; Solar cycles ; Solar maximum ; Solar minimum ; Temperature gradients ; Temperature structure ; Thermal energy ; Thermosphere ; Upper atmosphere ; Upper thermosphere ; Viscosity ; Viscous drag ; Wind</subject><ispartof>Journal of geophysical research. Space physics, 2016-10, Vol.121 (10), p.10,417-10,430</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</citedby><cites>FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JA023058$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JA023058$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Hsu, Vicki W.</creatorcontrib><creatorcontrib>Thayer, Jeffrey P.</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Burns, Alan</creatorcontrib><title>New insights into the complex interplay between drag forces and its thermospheric consequences</title><title>Journal of geophysical research. Space physics</title><description>Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient.
Key Points
Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating
The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure
Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum</description><subject>Adiabatic flow</subject><subject>Circulation</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Drag</subject><subject>Drag (hindrance)</subject><subject>Energy budget</subject><subject>Geomagnetic activity</subject><subject>Geomagnetism</subject><subject>Geophysics</subject><subject>Global temperatures</subject><subject>Global winds</subject><subject>Heating</subject><subject>Ion drag</subject><subject>Ionosphere</subject><subject>ion‐neutral coupling</subject><subject>neutral dynamics</subject><subject>neutral temperature</subject><subject>Night</subject><subject>Pressure gradients</subject><subject>Resultants</subject><subject>Shedding</subject><subject>Solar cycle</subject><subject>Solar cycles</subject><subject>Solar maximum</subject><subject>Solar minimum</subject><subject>Temperature gradients</subject><subject>Temperature structure</subject><subject>Thermal energy</subject><subject>Thermosphere</subject><subject>Upper atmosphere</subject><subject>Upper thermosphere</subject><subject>Viscosity</subject><subject>Viscous drag</subject><subject>Wind</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhoMoWGpv_oCAFw9GZz-y2RxL0WopCqJXw2YzaVOSbNxNqf33bqiCeBDnMsPL884HEwTnBK4JAL2hQMRiCpRBLI-CESUijVIO9Pi7ZhJOg4lzG_AhvUTiUfD2iLuwal21WvfOF70J-zWG2jRdjR-DgLar1T7Msd8htmFh1SosjdXoQtUWYeVt3mEb4zqfKu29rcP3LbYeOQtOSlU7nHzlcfB6d_syu4-WT_OH2XQZaS4piwqaa5UL5FikGohMaSGkl4jSLJeS6rwsSimEJHmZ8xI4YyzJlRRc6lJLZOPg8tC3s8aPdn3WVE5jXasWzdZlxKNxkvCE_wONIZHARerRi1_oxmxt6w_JSAo0ZsNGf1KSx0CSRAxjrw6UtsY5i2XW2apRdp8RyIYHZj8f6HF2wHdVjfs_2Wwxf57GDAhjnzgAm7E</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Hsu, Vicki W.</creator><creator>Thayer, Jeffrey P.</creator><creator>Wang, Wenbin</creator><creator>Burns, Alan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>New insights into the complex interplay between drag forces and its thermospheric consequences</title><author>Hsu, Vicki W. ; Thayer, Jeffrey P. ; Wang, Wenbin ; Burns, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Circulation</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Drag</topic><topic>Drag (hindrance)</topic><topic>Energy budget</topic><topic>Geomagnetic activity</topic><topic>Geomagnetism</topic><topic>Geophysics</topic><topic>Global temperatures</topic><topic>Global winds</topic><topic>Heating</topic><topic>Ion drag</topic><topic>Ionosphere</topic><topic>ion‐neutral coupling</topic><topic>neutral dynamics</topic><topic>neutral temperature</topic><topic>Night</topic><topic>Pressure gradients</topic><topic>Resultants</topic><topic>Shedding</topic><topic>Solar cycle</topic><topic>Solar cycles</topic><topic>Solar maximum</topic><topic>Solar minimum</topic><topic>Temperature gradients</topic><topic>Temperature structure</topic><topic>Thermal energy</topic><topic>Thermosphere</topic><topic>Upper atmosphere</topic><topic>Upper thermosphere</topic><topic>Viscosity</topic><topic>Viscous drag</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Vicki W.</creatorcontrib><creatorcontrib>Thayer, Jeffrey P.</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Burns, Alan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Vicki W.</au><au>Thayer, Jeffrey P.</au><au>Wang, Wenbin</au><au>Burns, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the complex interplay between drag forces and its thermospheric consequences</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-10</date><risdate>2016</risdate><volume>121</volume><issue>10</issue><spage>10,417</spage><epage>10,430</epage><pages>10,417-10,430</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient.
Key Points
Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating
The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure
Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JA023058</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2016-10, Vol.121 (10), p.10,417-10,430 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864577474 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Adiabatic flow Circulation Cooling Cooling effects Drag Drag (hindrance) Energy budget Geomagnetic activity Geomagnetism Geophysics Global temperatures Global winds Heating Ion drag Ionosphere ion‐neutral coupling neutral dynamics neutral temperature Night Pressure gradients Resultants Shedding Solar cycle Solar cycles Solar maximum Solar minimum Temperature gradients Temperature structure Thermal energy Thermosphere Upper atmosphere Upper thermosphere Viscosity Viscous drag Wind |
title | New insights into the complex interplay between drag forces and its thermospheric consequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20complex%20interplay%20between%20drag%20forces%20and%20its%20thermospheric%20consequences&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Hsu,%20Vicki%20W.&rft.date=2016-10&rft.volume=121&rft.issue=10&rft.spage=10,417&rft.epage=10,430&rft.pages=10,417-10,430&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2016JA023058&rft_dat=%3Cproquest_cross%3E1902536681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845017764&rft_id=info:pmid/&rfr_iscdi=true |