New insights into the complex interplay between drag forces and its thermospheric consequences

Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and visco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2016-10, Vol.121 (10), p.10,417-10,430
Hauptverfasser: Hsu, Vicki W., Thayer, Jeffrey P., Wang, Wenbin, Burns, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10,430
container_issue 10
container_start_page 10,417
container_title Journal of geophysical research. Space physics
container_volume 121
creator Hsu, Vicki W.
Thayer, Jeffrey P.
Wang, Wenbin
Burns, Alan
description Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient. Key Points Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum
doi_str_mv 10.1002/2016JA023058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864577474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902536681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhoMoWGpv_oCAFw9GZz-y2RxL0WopCqJXw2YzaVOSbNxNqf33bqiCeBDnMsPL884HEwTnBK4JAL2hQMRiCpRBLI-CESUijVIO9Pi7ZhJOg4lzG_AhvUTiUfD2iLuwal21WvfOF70J-zWG2jRdjR-DgLar1T7Msd8htmFh1SosjdXoQtUWYeVt3mEb4zqfKu29rcP3LbYeOQtOSlU7nHzlcfB6d_syu4-WT_OH2XQZaS4piwqaa5UL5FikGohMaSGkl4jSLJeS6rwsSimEJHmZ8xI4YyzJlRRc6lJLZOPg8tC3s8aPdn3WVE5jXasWzdZlxKNxkvCE_wONIZHARerRi1_oxmxt6w_JSAo0ZsNGf1KSx0CSRAxjrw6UtsY5i2XW2apRdp8RyIYHZj8f6HF2wHdVjfs_2Wwxf57GDAhjnzgAm7E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845017764</pqid></control><display><type>article</type><title>New insights into the complex interplay between drag forces and its thermospheric consequences</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Hsu, Vicki W. ; Thayer, Jeffrey P. ; Wang, Wenbin ; Burns, Alan</creator><creatorcontrib>Hsu, Vicki W. ; Thayer, Jeffrey P. ; Wang, Wenbin ; Burns, Alan</creatorcontrib><description>Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient. Key Points Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2016JA023058</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Adiabatic flow ; Circulation ; Cooling ; Cooling effects ; Drag ; Drag (hindrance) ; Energy budget ; Geomagnetic activity ; Geomagnetism ; Geophysics ; Global temperatures ; Global winds ; Heating ; Ion drag ; Ionosphere ; ion‐neutral coupling ; neutral dynamics ; neutral temperature ; Night ; Pressure gradients ; Resultants ; Shedding ; Solar cycle ; Solar cycles ; Solar maximum ; Solar minimum ; Temperature gradients ; Temperature structure ; Thermal energy ; Thermosphere ; Upper atmosphere ; Upper thermosphere ; Viscosity ; Viscous drag ; Wind</subject><ispartof>Journal of geophysical research. Space physics, 2016-10, Vol.121 (10), p.10,417-10,430</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</citedby><cites>FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JA023058$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JA023058$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Hsu, Vicki W.</creatorcontrib><creatorcontrib>Thayer, Jeffrey P.</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Burns, Alan</creatorcontrib><title>New insights into the complex interplay between drag forces and its thermospheric consequences</title><title>Journal of geophysical research. Space physics</title><description>Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient. Key Points Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum</description><subject>Adiabatic flow</subject><subject>Circulation</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Drag</subject><subject>Drag (hindrance)</subject><subject>Energy budget</subject><subject>Geomagnetic activity</subject><subject>Geomagnetism</subject><subject>Geophysics</subject><subject>Global temperatures</subject><subject>Global winds</subject><subject>Heating</subject><subject>Ion drag</subject><subject>Ionosphere</subject><subject>ion‐neutral coupling</subject><subject>neutral dynamics</subject><subject>neutral temperature</subject><subject>Night</subject><subject>Pressure gradients</subject><subject>Resultants</subject><subject>Shedding</subject><subject>Solar cycle</subject><subject>Solar cycles</subject><subject>Solar maximum</subject><subject>Solar minimum</subject><subject>Temperature gradients</subject><subject>Temperature structure</subject><subject>Thermal energy</subject><subject>Thermosphere</subject><subject>Upper atmosphere</subject><subject>Upper thermosphere</subject><subject>Viscosity</subject><subject>Viscous drag</subject><subject>Wind</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhoMoWGpv_oCAFw9GZz-y2RxL0WopCqJXw2YzaVOSbNxNqf33bqiCeBDnMsPL884HEwTnBK4JAL2hQMRiCpRBLI-CESUijVIO9Pi7ZhJOg4lzG_AhvUTiUfD2iLuwal21WvfOF70J-zWG2jRdjR-DgLar1T7Msd8htmFh1SosjdXoQtUWYeVt3mEb4zqfKu29rcP3LbYeOQtOSlU7nHzlcfB6d_syu4-WT_OH2XQZaS4piwqaa5UL5FikGohMaSGkl4jSLJeS6rwsSimEJHmZ8xI4YyzJlRRc6lJLZOPg8tC3s8aPdn3WVE5jXasWzdZlxKNxkvCE_wONIZHARerRi1_oxmxt6w_JSAo0ZsNGf1KSx0CSRAxjrw6UtsY5i2XW2apRdp8RyIYHZj8f6HF2wHdVjfs_2Wwxf57GDAhjnzgAm7E</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Hsu, Vicki W.</creator><creator>Thayer, Jeffrey P.</creator><creator>Wang, Wenbin</creator><creator>Burns, Alan</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>New insights into the complex interplay between drag forces and its thermospheric consequences</title><author>Hsu, Vicki W. ; Thayer, Jeffrey P. ; Wang, Wenbin ; Burns, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4823-d2bcab6e4ed9c01892d68bca1ac3b882cbfdf86681bfb4f043337ba8648cfc8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adiabatic flow</topic><topic>Circulation</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Drag</topic><topic>Drag (hindrance)</topic><topic>Energy budget</topic><topic>Geomagnetic activity</topic><topic>Geomagnetism</topic><topic>Geophysics</topic><topic>Global temperatures</topic><topic>Global winds</topic><topic>Heating</topic><topic>Ion drag</topic><topic>Ionosphere</topic><topic>ion‐neutral coupling</topic><topic>neutral dynamics</topic><topic>neutral temperature</topic><topic>Night</topic><topic>Pressure gradients</topic><topic>Resultants</topic><topic>Shedding</topic><topic>Solar cycle</topic><topic>Solar cycles</topic><topic>Solar maximum</topic><topic>Solar minimum</topic><topic>Temperature gradients</topic><topic>Temperature structure</topic><topic>Thermal energy</topic><topic>Thermosphere</topic><topic>Upper atmosphere</topic><topic>Upper thermosphere</topic><topic>Viscosity</topic><topic>Viscous drag</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Vicki W.</creatorcontrib><creatorcontrib>Thayer, Jeffrey P.</creatorcontrib><creatorcontrib>Wang, Wenbin</creatorcontrib><creatorcontrib>Burns, Alan</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Vicki W.</au><au>Thayer, Jeffrey P.</au><au>Wang, Wenbin</au><au>Burns, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into the complex interplay between drag forces and its thermospheric consequences</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-10</date><risdate>2016</risdate><volume>121</volume><issue>10</issue><spage>10,417</spage><epage>10,430</epage><pages>10,417-10,430</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Drag forces, ion and viscous, are evaluated as modifiers of global wind and temperature structure in the upper thermosphere, shedding new light on their relative roles in neutral dynamics and energetics. Exploiting the coupling of an ionosphere‐thermosphere model, it is discovered that ion and viscous drag forces lead to sustained divergent winds, adjustments in mass, modification of pressure gradients, and a redistribution of the radiatively forced thermal energy. The interplay between the relative magnitudes of the ion and viscous drag forces and its effect on the ionosphere‐thermosphere system has not yet been addressed and results in diverse behavior in the neutral wind and temperature structures of the upper atmosphere, dependent upon the type of drag acting on the gas. It is found that viscous drag is more efficient in cooling the dayside thermosphere and heating the nightside than the ion drag force in solar maximum and under quiet geomagnetic activity, resulting in a 150 K day‐night temperature difference. The ion drag force inhibits this effective day‐to‐night energy circulation, culminating in a dynamically induced difference of about 400 K in the day‐night temperature difference. It is demonstrated that the resultant wind and thermal structure greatly depends on the type of drag force environment, and a mechanism is introduced whereby ion and viscous drag forces can alter the energy budget of the upper thermosphere system. For example, in solar minimum, viscous drag is significant relative to other forces and more effectively cools the dayside and warms the nightside, thereby reducing the day‐night temperature gradient. Key Points Drag forces can produce balanced motion with sustained divergent winds that change the thermal structure through adiabatic heating The type of drag prevalent in the upper thermosphere is important in determining the resultant wind and temperature structure Viscous drag is most effective in cooling the dayside and warming the nightside, particularly at solar minimum</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JA023058</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2016-10, Vol.121 (10), p.10,417-10,430
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1864577474
source Wiley Free Content; Wiley Online Library All Journals
subjects Adiabatic flow
Circulation
Cooling
Cooling effects
Drag
Drag (hindrance)
Energy budget
Geomagnetic activity
Geomagnetism
Geophysics
Global temperatures
Global winds
Heating
Ion drag
Ionosphere
ion‐neutral coupling
neutral dynamics
neutral temperature
Night
Pressure gradients
Resultants
Shedding
Solar cycle
Solar cycles
Solar maximum
Solar minimum
Temperature gradients
Temperature structure
Thermal energy
Thermosphere
Upper atmosphere
Upper thermosphere
Viscosity
Viscous drag
Wind
title New insights into the complex interplay between drag forces and its thermospheric consequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20the%20complex%20interplay%20between%20drag%20forces%20and%20its%20thermospheric%20consequences&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Hsu,%20Vicki%20W.&rft.date=2016-10&rft.volume=121&rft.issue=10&rft.spage=10,417&rft.epage=10,430&rft.pages=10,417-10,430&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2016JA023058&rft_dat=%3Cproquest_cross%3E1902536681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845017764&rft_id=info:pmid/&rfr_iscdi=true