Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants

A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly­(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-11, Vol.88 (21), p.10583-10591
Hauptverfasser: Challis, Jonathan K, Hanson, Mark L, Wong, Charles S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10591
container_issue 21
container_start_page 10583
container_title Analytical chemistry (Washington)
container_volume 88
creator Challis, Jonathan K
Hanson, Mark L
Wong, Charles S
description A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly­(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of
doi_str_mv 10.1021/acs.analchem.6b02749
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864576969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4240624241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVpaTZp36AUQS-9eDuSbdk6ht0mLQQSaHo2I1tqFGRpI9mBPkjfN3J2t4UeSi8aGL7_E8NPyDsGawacfcI-rdGj6-_0uBYKeFPJF2TFag6FaFv-kqwAoCx4A3BCTlO6B2AMmHhNTnjTgGxluSK_tvpRu7AbtZ8o-oFu0FkVcbLB02Dyil7HH-htX2ytMXOyj5peRhxsDiRqPb29y8-FdWOi5w9zDvb0BtMz9w3HndORmhAp0m1exZS3s5304r4JDuNRTzfBTzhaj9n7hrwy6JJ-e5hn5PvF59vNl-Lq-vLr5vyqwJqJqTBC9lDXba1M3bf5qIobpoRsoRSYj1W1qQZmtG5BKJRyYE2lJAIoPgyiwvKMfNx7dzE8zDpN3WhTr51Dr8OcOtaKqm6EFPI_0LKSsuR8QT_8hd6HOeaqnilRtyDZQlV7qo8hpahNt4t2xPizY9AtDXe54e7YcHdoOMfeH-SzGvXwO3SsNAOwB5b4n4__5XwCT4K1ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836580919</pqid></control><display><type>article</type><title>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</title><source>ACS Publications</source><creator>Challis, Jonathan K ; Hanson, Mark L ; Wong, Charles S</creator><creatorcontrib>Challis, Jonathan K ; Hanson, Mark L ; Wong, Charles S</creatorcontrib><description>A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly­(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 &gt; 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of &lt;45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02749</identifier><identifier>PMID: 27709893</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Antibiotics ; Boundary layer ; Calibration ; Mass transfer ; Organic chemistry ; Pesticides ; Samplers ; Sampling ; Temperature effects ; Thickness ; Thin films ; Water treatment plants</subject><ispartof>Analytical chemistry (Washington), 2016-11, Vol.88 (21), p.10583-10591</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</citedby><cites>FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02749$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02749$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27709893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Challis, Jonathan K</creatorcontrib><creatorcontrib>Hanson, Mark L</creatorcontrib><creatorcontrib>Wong, Charles S</creatorcontrib><title>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly­(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 &gt; 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of &lt;45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.</description><subject>Analytical chemistry</subject><subject>Antibiotics</subject><subject>Boundary layer</subject><subject>Calibration</subject><subject>Mass transfer</subject><subject>Organic chemistry</subject><subject>Pesticides</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Temperature effects</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Water treatment plants</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhkVpaTZp36AUQS-9eDuSbdk6ht0mLQQSaHo2I1tqFGRpI9mBPkjfN3J2t4UeSi8aGL7_E8NPyDsGawacfcI-rdGj6-_0uBYKeFPJF2TFag6FaFv-kqwAoCx4A3BCTlO6B2AMmHhNTnjTgGxluSK_tvpRu7AbtZ8o-oFu0FkVcbLB02Dyil7HH-htX2ytMXOyj5peRhxsDiRqPb29y8-FdWOi5w9zDvb0BtMz9w3HndORmhAp0m1exZS3s5304r4JDuNRTzfBTzhaj9n7hrwy6JJ-e5hn5PvF59vNl-Lq-vLr5vyqwJqJqTBC9lDXba1M3bf5qIobpoRsoRSYj1W1qQZmtG5BKJRyYE2lJAIoPgyiwvKMfNx7dzE8zDpN3WhTr51Dr8OcOtaKqm6EFPI_0LKSsuR8QT_8hd6HOeaqnilRtyDZQlV7qo8hpahNt4t2xPizY9AtDXe54e7YcHdoOMfeH-SzGvXwO3SsNAOwB5b4n4__5XwCT4K1ug</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Challis, Jonathan K</creator><creator>Hanson, Mark L</creator><creator>Wong, Charles S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</title><author>Challis, Jonathan K ; Hanson, Mark L ; Wong, Charles S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical chemistry</topic><topic>Antibiotics</topic><topic>Boundary layer</topic><topic>Calibration</topic><topic>Mass transfer</topic><topic>Organic chemistry</topic><topic>Pesticides</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Temperature effects</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Challis, Jonathan K</creatorcontrib><creatorcontrib>Hanson, Mark L</creatorcontrib><creatorcontrib>Wong, Charles S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Challis, Jonathan K</au><au>Hanson, Mark L</au><au>Wong, Charles S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>88</volume><issue>21</issue><spage>10583</spage><epage>10591</epage><pages>10583-10591</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly­(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 &gt; 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of &lt;45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27709893</pmid><doi>10.1021/acs.analchem.6b02749</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-11, Vol.88 (21), p.10583-10591
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1864576969
source ACS Publications
subjects Analytical chemistry
Antibiotics
Boundary layer
Calibration
Mass transfer
Organic chemistry
Pesticides
Samplers
Sampling
Temperature effects
Thickness
Thin films
Water treatment plants
title Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Calibration%20of%20an%20Organic-Diffusive%20Gradients%20in%20Thin%20Films%20Aquatic%20Passive%20Sampler%20for%20a%20Diverse%20Suite%20of%20Polar%20Organic%20Contaminants&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Challis,%20Jonathan%20K&rft.date=2016-11-01&rft.volume=88&rft.issue=21&rft.spage=10583&rft.epage=10591&rft.pages=10583-10591&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02749&rft_dat=%3Cproquest_cross%3E4240624241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836580919&rft_id=info:pmid/27709893&rfr_iscdi=true