Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants
A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmace...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-11, Vol.88 (21), p.10583-10591 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10591 |
---|---|
container_issue | 21 |
container_start_page | 10583 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Challis, Jonathan K Hanson, Mark L Wong, Charles S |
description | A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of |
doi_str_mv | 10.1021/acs.analchem.6b02749 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864576969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4240624241</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVpaTZp36AUQS-9eDuSbdk6ht0mLQQSaHo2I1tqFGRpI9mBPkjfN3J2t4UeSi8aGL7_E8NPyDsGawacfcI-rdGj6-_0uBYKeFPJF2TFag6FaFv-kqwAoCx4A3BCTlO6B2AMmHhNTnjTgGxluSK_tvpRu7AbtZ8o-oFu0FkVcbLB02Dyil7HH-htX2ytMXOyj5peRhxsDiRqPb29y8-FdWOi5w9zDvb0BtMz9w3HndORmhAp0m1exZS3s5304r4JDuNRTzfBTzhaj9n7hrwy6JJ-e5hn5PvF59vNl-Lq-vLr5vyqwJqJqTBC9lDXba1M3bf5qIobpoRsoRSYj1W1qQZmtG5BKJRyYE2lJAIoPgyiwvKMfNx7dzE8zDpN3WhTr51Dr8OcOtaKqm6EFPI_0LKSsuR8QT_8hd6HOeaqnilRtyDZQlV7qo8hpahNt4t2xPizY9AtDXe54e7YcHdoOMfeH-SzGvXwO3SsNAOwB5b4n4__5XwCT4K1ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836580919</pqid></control><display><type>article</type><title>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</title><source>ACS Publications</source><creator>Challis, Jonathan K ; Hanson, Mark L ; Wong, Charles S</creator><creatorcontrib>Challis, Jonathan K ; Hanson, Mark L ; Wong, Charles S</creatorcontrib><description>A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of <45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02749</identifier><identifier>PMID: 27709893</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Antibiotics ; Boundary layer ; Calibration ; Mass transfer ; Organic chemistry ; Pesticides ; Samplers ; Sampling ; Temperature effects ; Thickness ; Thin films ; Water treatment plants</subject><ispartof>Analytical chemistry (Washington), 2016-11, Vol.88 (21), p.10583-10591</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</citedby><cites>FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02749$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02749$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27709893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Challis, Jonathan K</creatorcontrib><creatorcontrib>Hanson, Mark L</creatorcontrib><creatorcontrib>Wong, Charles S</creatorcontrib><title>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of <45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.</description><subject>Analytical chemistry</subject><subject>Antibiotics</subject><subject>Boundary layer</subject><subject>Calibration</subject><subject>Mass transfer</subject><subject>Organic chemistry</subject><subject>Pesticides</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Temperature effects</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Water treatment plants</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFq3DAQhkVpaTZp36AUQS-9eDuSbdk6ht0mLQQSaHo2I1tqFGRpI9mBPkjfN3J2t4UeSi8aGL7_E8NPyDsGawacfcI-rdGj6-_0uBYKeFPJF2TFag6FaFv-kqwAoCx4A3BCTlO6B2AMmHhNTnjTgGxluSK_tvpRu7AbtZ8o-oFu0FkVcbLB02Dyil7HH-htX2ytMXOyj5peRhxsDiRqPb29y8-FdWOi5w9zDvb0BtMz9w3HndORmhAp0m1exZS3s5304r4JDuNRTzfBTzhaj9n7hrwy6JJ-e5hn5PvF59vNl-Lq-vLr5vyqwJqJqTBC9lDXba1M3bf5qIobpoRsoRSYj1W1qQZmtG5BKJRyYE2lJAIoPgyiwvKMfNx7dzE8zDpN3WhTr51Dr8OcOtaKqm6EFPI_0LKSsuR8QT_8hd6HOeaqnilRtyDZQlV7qo8hpahNt4t2xPizY9AtDXe54e7YcHdoOMfeH-SzGvXwO3SsNAOwB5b4n4__5XwCT4K1ug</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Challis, Jonathan K</creator><creator>Hanson, Mark L</creator><creator>Wong, Charles S</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161101</creationdate><title>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</title><author>Challis, Jonathan K ; Hanson, Mark L ; Wong, Charles S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516t-f69c05585bf5c827742f1b698036a011b5f4d1fee806ba99d174b9a00b2dd64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical chemistry</topic><topic>Antibiotics</topic><topic>Boundary layer</topic><topic>Calibration</topic><topic>Mass transfer</topic><topic>Organic chemistry</topic><topic>Pesticides</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Temperature effects</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Water treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Challis, Jonathan K</creatorcontrib><creatorcontrib>Hanson, Mark L</creatorcontrib><creatorcontrib>Wong, Charles S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Challis, Jonathan K</au><au>Hanson, Mark L</au><au>Wong, Charles S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>88</volume><issue>21</issue><spage>10583</spage><epage>10591</epage><pages>10583-10591</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A unique configuration of the diffusive gradients in thin films sampler for polar organics (o-DGT) without a poly(ether sulfone) membrane was developed, calibrated, and field-evaluated. Diffusion coefficients (D) through agarose diffusive gels ranged from (1.02 to 4.74) × 10–6 cm2/s for 34 pharmaceuticals and pesticides at 5, 13, and 23 °C. Analyte-specific diffusion–temperature plots produced linear (r 2 > 0.85) empirical relationships whereby D could be estimated at any environmentally relevant temperature (i.e., matched to in situ water conditions). Linear uptake for all analytes was observed in a static renewal calibration experiment over 25 days except for three macrolide antibiotics, which reached saturation at 300 ng (≈15 d). Experimental sampling rates ranged from 8.8 to 16.1 mL/d and were successfully estimated with measured and modeled D within 19% and 30% average relative error, respectively. Under slow flowing (2.4 cm/s) and static conditions, the in situ diffusive boundary layer (DBL) thickness ranged from 0.023 to 0.075 cm, resulting in a maximum contribution to mass transfer of <45%. Estimated water concentrations by o-DGT at a wastewater treatment plant agreed well with grab samples and appeared to be less influenced by the boundary layer compared to that of polar organic chemical integrative samplers (POCIS) deployed simultaneously. The o-DGT sampler is a promising monitoring tool that is largely insensitive to the DBL under typical flow conditions, facilitating the application of measured/modeled diffusion-based sampling rates. This significantly reduces the need for sampler calibration, making o-DGT more widely applicable, reliable, and cost-effective compared to current polar passive samplers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27709893</pmid><doi>10.1021/acs.analchem.6b02749</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-11, Vol.88 (21), p.10583-10591 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864576969 |
source | ACS Publications |
subjects | Analytical chemistry Antibiotics Boundary layer Calibration Mass transfer Organic chemistry Pesticides Samplers Sampling Temperature effects Thickness Thin films Water treatment plants |
title | Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Calibration%20of%20an%20Organic-Diffusive%20Gradients%20in%20Thin%20Films%20Aquatic%20Passive%20Sampler%20for%20a%20Diverse%20Suite%20of%20Polar%20Organic%20Contaminants&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Challis,%20Jonathan%20K&rft.date=2016-11-01&rft.volume=88&rft.issue=21&rft.spage=10583&rft.epage=10591&rft.pages=10583-10591&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02749&rft_dat=%3Cproquest_cross%3E4240624241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836580919&rft_id=info:pmid/27709893&rfr_iscdi=true |