The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions

The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2016-11, Vol.39 (17), p.4951-4963
Hauptverfasser: Shannon, Samuel, Peron, Victor, Yosibash, Zohar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4963
container_issue 17
container_start_page 4951
container_title Mathematical methods in the applied sciences
container_volume 39
creator Shannon, Samuel
Peron, Victor
Yosibash, Zohar
description The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3562
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864575009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4267131301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3592-4745c540abb5d904330c21cc00709e58f119cfc410228deb2dd142e86feb6523</originalsourceid><addsrcrecordid>eNp10c9u1DAQBnALgcRSkHgES1y4pIwdO4m5lQJbxBYOrNSj5bUnW7eJvbUddfcpeGXSPwKBxMmH-c03lj5CXjM4ZgD83Tia41o2_AlZMFCqYqJtnpIFsBYqwZl4Tl7kfAUAHWN8QX6uL5GuzG4wFineTKb4GKgPtP5IXRyND5ne-nJJbTL2Or-nbjIDzT5sp8EkXzw-zoe4pQXTmKkJjuK-zP4-K_bUxpQw72Jw8x5Ft0XaD9N-PlMwZF8OtJ_Cvc4vybPeDBlfPb5HZP350_r0rFp9X345PVlVtpaKV6IV0koBZrORToGoa7CcWQvQgkLZ9Ywp21vBgPPO4YY7xwTHrulx00heH5G3D7G7FG8mzEWPPlscBhMwTlmzrhGylQBqpm_-oVdxSmH-3KyEhEYBV38CbYo5J-z1LvnRpINmoO-K0XMx-q6YmVYP9NYPePiv0-fnJ397nwvuf3uTrnXT1q3UF9-WWny9OFv--CB1W_8CH7mfSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845069029</pqid></control><display><type>article</type><title>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shannon, Samuel ; Peron, Victor ; Yosibash, Zohar</creator><creatorcontrib>Shannon, Samuel ; Peron, Victor ; Yosibash, Zohar</creatorcontrib><description>The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3562</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>3D singularities ; Cracks ; dual eigenvalues ; dual singularities ; edge flux/stress intensity functions ; Eigenvalues ; Flux ; Laplace equation ; logarithmic singularities ; Mathematical analysis ; Mathematical models ; quasi-dual function method ; Shadows ; Singularities</subject><ispartof>Mathematical methods in the applied sciences, 2016-11, Vol.39 (17), p.4951-4963</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3592-4745c540abb5d904330c21cc00709e58f119cfc410228deb2dd142e86feb6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3562$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3562$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shannon, Samuel</creatorcontrib><creatorcontrib>Peron, Victor</creatorcontrib><creatorcontrib>Yosibash, Zohar</creatorcontrib><title>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>3D singularities</subject><subject>Cracks</subject><subject>dual eigenvalues</subject><subject>dual singularities</subject><subject>edge flux/stress intensity functions</subject><subject>Eigenvalues</subject><subject>Flux</subject><subject>Laplace equation</subject><subject>logarithmic singularities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>quasi-dual function method</subject><subject>Shadows</subject><subject>Singularities</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10c9u1DAQBnALgcRSkHgES1y4pIwdO4m5lQJbxBYOrNSj5bUnW7eJvbUddfcpeGXSPwKBxMmH-c03lj5CXjM4ZgD83Tia41o2_AlZMFCqYqJtnpIFsBYqwZl4Tl7kfAUAHWN8QX6uL5GuzG4wFineTKb4GKgPtP5IXRyND5ne-nJJbTL2Or-nbjIDzT5sp8EkXzw-zoe4pQXTmKkJjuK-zP4-K_bUxpQw72Jw8x5Ft0XaD9N-PlMwZF8OtJ_Cvc4vybPeDBlfPb5HZP350_r0rFp9X345PVlVtpaKV6IV0koBZrORToGoa7CcWQvQgkLZ9Ywp21vBgPPO4YY7xwTHrulx00heH5G3D7G7FG8mzEWPPlscBhMwTlmzrhGylQBqpm_-oVdxSmH-3KyEhEYBV38CbYo5J-z1LvnRpINmoO-K0XMx-q6YmVYP9NYPePiv0-fnJ397nwvuf3uTrnXT1q3UF9-WWny9OFv--CB1W_8CH7mfSg</recordid><startdate>20161130</startdate><enddate>20161130</enddate><creator>Shannon, Samuel</creator><creator>Peron, Victor</creator><creator>Yosibash, Zohar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20161130</creationdate><title>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</title><author>Shannon, Samuel ; Peron, Victor ; Yosibash, Zohar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3592-4745c540abb5d904330c21cc00709e58f119cfc410228deb2dd142e86feb6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D singularities</topic><topic>Cracks</topic><topic>dual eigenvalues</topic><topic>dual singularities</topic><topic>edge flux/stress intensity functions</topic><topic>Eigenvalues</topic><topic>Flux</topic><topic>Laplace equation</topic><topic>logarithmic singularities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>quasi-dual function method</topic><topic>Shadows</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shannon, Samuel</creatorcontrib><creatorcontrib>Peron, Victor</creatorcontrib><creatorcontrib>Yosibash, Zohar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shannon, Samuel</au><au>Peron, Victor</au><au>Yosibash, Zohar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2016-11-30</date><risdate>2016</risdate><volume>39</volume><issue>17</issue><spage>4951</spage><epage>4963</epage><pages>4951-4963</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3562</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2016-11, Vol.39 (17), p.4951-4963
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1864575009
source Wiley Online Library Journals Frontfile Complete
subjects 3D singularities
Cracks
dual eigenvalues
dual singularities
edge flux/stress intensity functions
Eigenvalues
Flux
Laplace equation
logarithmic singularities
Mathematical analysis
Mathematical models
quasi-dual function method
Shadows
Singularities
title The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplace%20equation%20in%203D%20domains%20with%20cracks:%20dual%20singularities%20with%20log%20terms%20and%20extraction%20of%20corresponding%20edge%20flux%20intensity%20functions&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shannon,%20Samuel&rft.date=2016-11-30&rft.volume=39&rft.issue=17&rft.spage=4951&rft.epage=4963&rft.pages=4951-4963&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3562&rft_dat=%3Cproquest_cross%3E4267131301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845069029&rft_id=info:pmid/&rfr_iscdi=true