The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions
The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM)....
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2016-11, Vol.39 (17), p.4951-4963 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4963 |
---|---|
container_issue | 17 |
container_start_page | 4951 |
container_title | Mathematical methods in the applied sciences |
container_volume | 39 |
creator | Shannon, Samuel Peron, Victor Yosibash, Zohar |
description | The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3562 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864575009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4267131301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3592-4745c540abb5d904330c21cc00709e58f119cfc410228deb2dd142e86feb6523</originalsourceid><addsrcrecordid>eNp10c9u1DAQBnALgcRSkHgES1y4pIwdO4m5lQJbxBYOrNSj5bUnW7eJvbUddfcpeGXSPwKBxMmH-c03lj5CXjM4ZgD83Tia41o2_AlZMFCqYqJtnpIFsBYqwZl4Tl7kfAUAHWN8QX6uL5GuzG4wFineTKb4GKgPtP5IXRyND5ne-nJJbTL2Or-nbjIDzT5sp8EkXzw-zoe4pQXTmKkJjuK-zP4-K_bUxpQw72Jw8x5Ft0XaD9N-PlMwZF8OtJ_Cvc4vybPeDBlfPb5HZP350_r0rFp9X345PVlVtpaKV6IV0koBZrORToGoa7CcWQvQgkLZ9Ywp21vBgPPO4YY7xwTHrulx00heH5G3D7G7FG8mzEWPPlscBhMwTlmzrhGylQBqpm_-oVdxSmH-3KyEhEYBV38CbYo5J-z1LvnRpINmoO-K0XMx-q6YmVYP9NYPePiv0-fnJ397nwvuf3uTrnXT1q3UF9-WWny9OFv--CB1W_8CH7mfSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845069029</pqid></control><display><type>article</type><title>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shannon, Samuel ; Peron, Victor ; Yosibash, Zohar</creator><creatorcontrib>Shannon, Samuel ; Peron, Victor ; Yosibash, Zohar</creatorcontrib><description>The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3562</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>3D singularities ; Cracks ; dual eigenvalues ; dual singularities ; edge flux/stress intensity functions ; Eigenvalues ; Flux ; Laplace equation ; logarithmic singularities ; Mathematical analysis ; Mathematical models ; quasi-dual function method ; Shadows ; Singularities</subject><ispartof>Mathematical methods in the applied sciences, 2016-11, Vol.39 (17), p.4951-4963</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3592-4745c540abb5d904330c21cc00709e58f119cfc410228deb2dd142e86feb6523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3562$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3562$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shannon, Samuel</creatorcontrib><creatorcontrib>Peron, Victor</creatorcontrib><creatorcontrib>Yosibash, Zohar</creatorcontrib><title>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>3D singularities</subject><subject>Cracks</subject><subject>dual eigenvalues</subject><subject>dual singularities</subject><subject>edge flux/stress intensity functions</subject><subject>Eigenvalues</subject><subject>Flux</subject><subject>Laplace equation</subject><subject>logarithmic singularities</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>quasi-dual function method</subject><subject>Shadows</subject><subject>Singularities</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10c9u1DAQBnALgcRSkHgES1y4pIwdO4m5lQJbxBYOrNSj5bUnW7eJvbUddfcpeGXSPwKBxMmH-c03lj5CXjM4ZgD83Tia41o2_AlZMFCqYqJtnpIFsBYqwZl4Tl7kfAUAHWN8QX6uL5GuzG4wFineTKb4GKgPtP5IXRyND5ne-nJJbTL2Or-nbjIDzT5sp8EkXzw-zoe4pQXTmKkJjuK-zP4-K_bUxpQw72Jw8x5Ft0XaD9N-PlMwZF8OtJ_Cvc4vybPeDBlfPb5HZP350_r0rFp9X345PVlVtpaKV6IV0koBZrORToGoa7CcWQvQgkLZ9Ywp21vBgPPO4YY7xwTHrulx00heH5G3D7G7FG8mzEWPPlscBhMwTlmzrhGylQBqpm_-oVdxSmH-3KyEhEYBV38CbYo5J-z1LvnRpINmoO-K0XMx-q6YmVYP9NYPePiv0-fnJ397nwvuf3uTrnXT1q3UF9-WWny9OFv--CB1W_8CH7mfSg</recordid><startdate>20161130</startdate><enddate>20161130</enddate><creator>Shannon, Samuel</creator><creator>Peron, Victor</creator><creator>Yosibash, Zohar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20161130</creationdate><title>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</title><author>Shannon, Samuel ; Peron, Victor ; Yosibash, Zohar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3592-4745c540abb5d904330c21cc00709e58f119cfc410228deb2dd142e86feb6523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>3D singularities</topic><topic>Cracks</topic><topic>dual eigenvalues</topic><topic>dual singularities</topic><topic>edge flux/stress intensity functions</topic><topic>Eigenvalues</topic><topic>Flux</topic><topic>Laplace equation</topic><topic>logarithmic singularities</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>quasi-dual function method</topic><topic>Shadows</topic><topic>Singularities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shannon, Samuel</creatorcontrib><creatorcontrib>Peron, Victor</creatorcontrib><creatorcontrib>Yosibash, Zohar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shannon, Samuel</au><au>Peron, Victor</au><au>Yosibash, Zohar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2016-11-30</date><risdate>2016</risdate><volume>39</volume><issue>17</issue><spage>4951</spage><epage>4963</epage><pages>4951-4963</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>The singular solution of the Laplace equation with a straight crack is represented by a series of eigenpairs, shadows, and their associated edge flux intensity functions (EFIFs). We address the computation of the EFIFs associated with the integer eigenvalues by the quasi‐dual function method (QDFM). The QDFM is based on the dual eigenpairs and shadows, and we exhibit the presence of logarithmic terms in the dual singularities associated with the integer eigenvalues. These are then used with the QDFM to extract EFIFs from p‐version finite element solutions. Numerical examples are provided. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3562</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2016-11, Vol.39 (17), p.4951-4963 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864575009 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D singularities Cracks dual eigenvalues dual singularities edge flux/stress intensity functions Eigenvalues Flux Laplace equation logarithmic singularities Mathematical analysis Mathematical models quasi-dual function method Shadows Singularities |
title | The Laplace equation in 3D domains with cracks: dual singularities with log terms and extraction of corresponding edge flux intensity functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Laplace%20equation%20in%203D%20domains%20with%20cracks:%20dual%20singularities%20with%20log%20terms%20and%20extraction%20of%20corresponding%20edge%20flux%20intensity%20functions&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shannon,%20Samuel&rft.date=2016-11-30&rft.volume=39&rft.issue=17&rft.spage=4951&rft.epage=4963&rft.pages=4951-4963&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3562&rft_dat=%3Cproquest_cross%3E4267131301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845069029&rft_id=info:pmid/&rfr_iscdi=true |