A method for nondestructive mechanical testing of tissues and implants

Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-01, Vol.105 (1), p.15-22
Hauptverfasser: Shah, Ruchit, Pierce, Mark C., Silver, Frederick H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 15
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Shah, Ruchit
Pierce, Mark C.
Silver, Frederick H.
description Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.
doi_str_mv 10.1002/jbm.a.35859
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864574965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864574965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</originalsourceid><addsrcrecordid>eNqNkTtPwzAURi0EoqUwsaNILEgoxc84HktFeaiIBWbLcW5oqjxKnID673HawsCAOtmyj47udz-EzgkeE4zpzTIpx2bMRCzUARoSIWjIVSQO-ztXIaMqGqAT55YejrCgx2hApcCSKDZEs0lQQruo0yCrm6CqqxRc23S2zT_B_9iFqXJriqD1z3n1HtRZ0ObOdeACU6VBXq4KU7XuFB1lpnBwtjtH6G129zp9COcv94_TyTy0gjEVZthAbEESS1OCFeVgIJWWcgxRIpWVhlGmME3iTMooFQmnBEMagWHcikyxEbraeldN_eGHaHWZOwuFHwLqzmkSR1zIPv4eqN9BjKXEe6CcM4Fjn2GELv-gy7prKp95QyklFeuF11vKNrVzDWR61eSladaaYN2Xpn1p2uhNaZ6-2Dm7pIT0l_1pyQN0C3zlBaz_c-mn2-fJ1voNSuCglQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844997930</pqid></control><display><type>article</type><title>A method for nondestructive mechanical testing of tissues and implants</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Shah, Ruchit ; Pierce, Mark C. ; Silver, Frederick H.</creator><creatorcontrib>Shah, Ruchit ; Pierce, Mark C. ; Silver, Frederick H.</creatorcontrib><description>Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35859</identifier><identifier>PMID: 27507193</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>biomaterials ; Biomedical materials ; collagen ; Compressive properties ; dermis ; Dermis - chemistry ; Design analysis ; extracellular matrix ; Humans ; Implants, Experimental ; mechanical properties ; modulus ; Nondestructive testing ; optical coherence tomography ; Shear ; silicone ; skin ; Slopes ; Stress-strain relationships ; Surgical implants ; Tomography, Optical Coherence - methods ; Vibration ; viscoelasticity</subject><ispartof>Journal of biomedical materials research. Part A, 2017-01, Vol.105 (1), p.15-22</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</citedby><cites>FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35859$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35859$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27507193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Ruchit</creatorcontrib><creatorcontrib>Pierce, Mark C.</creatorcontrib><creatorcontrib>Silver, Frederick H.</creatorcontrib><title>A method for nondestructive mechanical testing of tissues and implants</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.</description><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>collagen</subject><subject>Compressive properties</subject><subject>dermis</subject><subject>Dermis - chemistry</subject><subject>Design analysis</subject><subject>extracellular matrix</subject><subject>Humans</subject><subject>Implants, Experimental</subject><subject>mechanical properties</subject><subject>modulus</subject><subject>Nondestructive testing</subject><subject>optical coherence tomography</subject><subject>Shear</subject><subject>silicone</subject><subject>skin</subject><subject>Slopes</subject><subject>Stress-strain relationships</subject><subject>Surgical implants</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Vibration</subject><subject>viscoelasticity</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtPwzAURi0EoqUwsaNILEgoxc84HktFeaiIBWbLcW5oqjxKnID673HawsCAOtmyj47udz-EzgkeE4zpzTIpx2bMRCzUARoSIWjIVSQO-ztXIaMqGqAT55YejrCgx2hApcCSKDZEs0lQQruo0yCrm6CqqxRc23S2zT_B_9iFqXJriqD1z3n1HtRZ0ObOdeACU6VBXq4KU7XuFB1lpnBwtjtH6G129zp9COcv94_TyTy0gjEVZthAbEESS1OCFeVgIJWWcgxRIpWVhlGmME3iTMooFQmnBEMagWHcikyxEbraeldN_eGHaHWZOwuFHwLqzmkSR1zIPv4eqN9BjKXEe6CcM4Fjn2GELv-gy7prKp95QyklFeuF11vKNrVzDWR61eSladaaYN2Xpn1p2uhNaZ6-2Dm7pIT0l_1pyQN0C3zlBaz_c-mn2-fJ1voNSuCglQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Shah, Ruchit</creator><creator>Pierce, Mark C.</creator><creator>Silver, Frederick H.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>A method for nondestructive mechanical testing of tissues and implants</title><author>Shah, Ruchit ; Pierce, Mark C. ; Silver, Frederick H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>collagen</topic><topic>Compressive properties</topic><topic>dermis</topic><topic>Dermis - chemistry</topic><topic>Design analysis</topic><topic>extracellular matrix</topic><topic>Humans</topic><topic>Implants, Experimental</topic><topic>mechanical properties</topic><topic>modulus</topic><topic>Nondestructive testing</topic><topic>optical coherence tomography</topic><topic>Shear</topic><topic>silicone</topic><topic>skin</topic><topic>Slopes</topic><topic>Stress-strain relationships</topic><topic>Surgical implants</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Vibration</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Ruchit</creatorcontrib><creatorcontrib>Pierce, Mark C.</creatorcontrib><creatorcontrib>Silver, Frederick H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Ruchit</au><au>Pierce, Mark C.</au><au>Silver, Frederick H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for nondestructive mechanical testing of tissues and implants</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-01</date><risdate>2017</risdate><volume>105</volume><issue>1</issue><spage>15</spage><epage>22</epage><pages>15-22</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27507193</pmid><doi>10.1002/jbm.a.35859</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-01, Vol.105 (1), p.15-22
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1864574965
source MEDLINE; Wiley Online Library
subjects biomaterials
Biomedical materials
collagen
Compressive properties
dermis
Dermis - chemistry
Design analysis
extracellular matrix
Humans
Implants, Experimental
mechanical properties
modulus
Nondestructive testing
optical coherence tomography
Shear
silicone
skin
Slopes
Stress-strain relationships
Surgical implants
Tomography, Optical Coherence - methods
Vibration
viscoelasticity
title A method for nondestructive mechanical testing of tissues and implants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20nondestructive%20mechanical%20testing%20of%20tissues%20and%20implants&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Shah,%20Ruchit&rft.date=2017-01&rft.volume=105&rft.issue=1&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35859&rft_dat=%3Cproquest_cross%3E1864574965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844997930&rft_id=info:pmid/27507193&rfr_iscdi=true