A method for nondestructive mechanical testing of tissues and implants
Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2017-01, Vol.105 (1), p.15-22 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 105 |
creator | Shah, Ruchit Pierce, Mark C. Silver, Frederick H. |
description | Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017. |
doi_str_mv | 10.1002/jbm.a.35859 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864574965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864574965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</originalsourceid><addsrcrecordid>eNqNkTtPwzAURi0EoqUwsaNILEgoxc84HktFeaiIBWbLcW5oqjxKnID673HawsCAOtmyj47udz-EzgkeE4zpzTIpx2bMRCzUARoSIWjIVSQO-ztXIaMqGqAT55YejrCgx2hApcCSKDZEs0lQQruo0yCrm6CqqxRc23S2zT_B_9iFqXJriqD1z3n1HtRZ0ObOdeACU6VBXq4KU7XuFB1lpnBwtjtH6G129zp9COcv94_TyTy0gjEVZthAbEESS1OCFeVgIJWWcgxRIpWVhlGmME3iTMooFQmnBEMagWHcikyxEbraeldN_eGHaHWZOwuFHwLqzmkSR1zIPv4eqN9BjKXEe6CcM4Fjn2GELv-gy7prKp95QyklFeuF11vKNrVzDWR61eSladaaYN2Xpn1p2uhNaZ6-2Dm7pIT0l_1pyQN0C3zlBaz_c-mn2-fJ1voNSuCglQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844997930</pqid></control><display><type>article</type><title>A method for nondestructive mechanical testing of tissues and implants</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Shah, Ruchit ; Pierce, Mark C. ; Silver, Frederick H.</creator><creatorcontrib>Shah, Ruchit ; Pierce, Mark C. ; Silver, Frederick H.</creatorcontrib><description>Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35859</identifier><identifier>PMID: 27507193</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>biomaterials ; Biomedical materials ; collagen ; Compressive properties ; dermis ; Dermis - chemistry ; Design analysis ; extracellular matrix ; Humans ; Implants, Experimental ; mechanical properties ; modulus ; Nondestructive testing ; optical coherence tomography ; Shear ; silicone ; skin ; Slopes ; Stress-strain relationships ; Surgical implants ; Tomography, Optical Coherence - methods ; Vibration ; viscoelasticity</subject><ispartof>Journal of biomedical materials research. Part A, 2017-01, Vol.105 (1), p.15-22</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</citedby><cites>FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35859$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35859$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27507193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Ruchit</creatorcontrib><creatorcontrib>Pierce, Mark C.</creatorcontrib><creatorcontrib>Silver, Frederick H.</creatorcontrib><title>A method for nondestructive mechanical testing of tissues and implants</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.</description><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>collagen</subject><subject>Compressive properties</subject><subject>dermis</subject><subject>Dermis - chemistry</subject><subject>Design analysis</subject><subject>extracellular matrix</subject><subject>Humans</subject><subject>Implants, Experimental</subject><subject>mechanical properties</subject><subject>modulus</subject><subject>Nondestructive testing</subject><subject>optical coherence tomography</subject><subject>Shear</subject><subject>silicone</subject><subject>skin</subject><subject>Slopes</subject><subject>Stress-strain relationships</subject><subject>Surgical implants</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Vibration</subject><subject>viscoelasticity</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtPwzAURi0EoqUwsaNILEgoxc84HktFeaiIBWbLcW5oqjxKnID673HawsCAOtmyj47udz-EzgkeE4zpzTIpx2bMRCzUARoSIWjIVSQO-ztXIaMqGqAT55YejrCgx2hApcCSKDZEs0lQQruo0yCrm6CqqxRc23S2zT_B_9iFqXJriqD1z3n1HtRZ0ObOdeACU6VBXq4KU7XuFB1lpnBwtjtH6G129zp9COcv94_TyTy0gjEVZthAbEESS1OCFeVgIJWWcgxRIpWVhlGmME3iTMooFQmnBEMagWHcikyxEbraeldN_eGHaHWZOwuFHwLqzmkSR1zIPv4eqN9BjKXEe6CcM4Fjn2GELv-gy7prKp95QyklFeuF11vKNrVzDWR61eSladaaYN2Xpn1p2uhNaZ6-2Dm7pIT0l_1pyQN0C3zlBaz_c-mn2-fJ1voNSuCglQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Shah, Ruchit</creator><creator>Pierce, Mark C.</creator><creator>Silver, Frederick H.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>A method for nondestructive mechanical testing of tissues and implants</title><author>Shah, Ruchit ; Pierce, Mark C. ; Silver, Frederick H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5339-f0ae8ce71c2d10924eaed7c240e6b79c7a323902b8f776d5b4210ed6ea34c5f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>collagen</topic><topic>Compressive properties</topic><topic>dermis</topic><topic>Dermis - chemistry</topic><topic>Design analysis</topic><topic>extracellular matrix</topic><topic>Humans</topic><topic>Implants, Experimental</topic><topic>mechanical properties</topic><topic>modulus</topic><topic>Nondestructive testing</topic><topic>optical coherence tomography</topic><topic>Shear</topic><topic>silicone</topic><topic>skin</topic><topic>Slopes</topic><topic>Stress-strain relationships</topic><topic>Surgical implants</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Vibration</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Ruchit</creatorcontrib><creatorcontrib>Pierce, Mark C.</creatorcontrib><creatorcontrib>Silver, Frederick H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Ruchit</au><au>Pierce, Mark C.</au><au>Silver, Frederick H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for nondestructive mechanical testing of tissues and implants</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-01</date><risdate>2017</risdate><volume>105</volume><issue>1</issue><spage>15</spage><epage>22</epage><pages>15-22</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Numerous tests have been used to elucidate mechanical properties of tissues and implants including tensile, compressive, shear, hydrostatic compression, and three‐point bending in one or more axial directions. The development of a nondestructive test that could be applied to tissues and materials in vivo would promote the analysis of tissue pathology as well as the design of implant materials. The purpose of this article is to present the results of preliminary studies demonstrating nondestructive in vitro testing of a tissue model, decellularized human dermis, and a model implant, silicone rubber, using a combination of optical coherence tomography (OCT), and vibrational analysis. The results presented suggest that nondestructive vibrational testing of tissues and materials can be used to determine the modulus of polymeric materials and the results are similar to those found using tensile stress‐strain measurements. The advantage of this method is that the modulus can be obtained from vibrational methods without having to approximate the tangent to the stress−strain curve, which is difficult for nonlinear materials that have a rapidly changing slope. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 15–22, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27507193</pmid><doi>10.1002/jbm.a.35859</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2017-01, Vol.105 (1), p.15-22 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864574965 |
source | MEDLINE; Wiley Online Library |
subjects | biomaterials Biomedical materials collagen Compressive properties dermis Dermis - chemistry Design analysis extracellular matrix Humans Implants, Experimental mechanical properties modulus Nondestructive testing optical coherence tomography Shear silicone skin Slopes Stress-strain relationships Surgical implants Tomography, Optical Coherence - methods Vibration viscoelasticity |
title | A method for nondestructive mechanical testing of tissues and implants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20nondestructive%20mechanical%20testing%20of%20tissues%20and%20implants&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Shah,%20Ruchit&rft.date=2017-01&rft.volume=105&rft.issue=1&rft.spage=15&rft.epage=22&rft.pages=15-22&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35859&rft_dat=%3Cproquest_cross%3E1864574965%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844997930&rft_id=info:pmid/27507193&rfr_iscdi=true |