Numerical Simulation and Experimental Research of Icicles under the Single Point of Blasting in the Yellow River

Blasting model of ice is established by ANSYS-LSDYNA in this paper. By using LS-PREPOST, the author analyzes the broken volume or diameter of ice in different working conditions, including the buried depth of explosive, the load and the thickness of ice. ORIGN drawing software is used to analyze the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.501-504 (Advances in Civil and Structural Engineering III), p.2020-2025
Hauptverfasser: Xu, Guan Chao, Xu, Guan Chun, Guo, Jun Wei, Zhao, Wei, Li, Jia Qing, Meng, Wen Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Blasting model of ice is established by ANSYS-LSDYNA in this paper. By using LS-PREPOST, the author analyzes the broken volume or diameter of ice in different working conditions, including the buried depth of explosive, the load and the thickness of ice. ORIGN drawing software is used to analyze the most suitable blasting location with different thickness of ice. The result shows that when the thickness is between 20cm and 60cm, the best blasting coefficient of water-medium ice is K=R/ H =0.5~1. It also shows that the explosive effect will be better when it is exploded under ice layer than in the middle or at the surface of ice layer. Calculation result and field test align fairly well. By simulating blasting parameter in different working conditions, ice prevention database is built, providing references for designers to develop a series of shaped into ice equipments. It also has important practical meaning to use various equipments to prevent and treat ice disasters of the Yellow River.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.501-504.2020