Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado

We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2017-01, Vol.277, p.171-181
Hauptverfasser: Wohl, Ellen, Rathburn, Sara, Chignell, Stephen, Garrett, Krista, Laurel, DeAnna, Livers, Bridget, Patton, Annette, Records, Rosemary, Richards, Mariah, Schook, Derek M., Sutfin, Nicholas A., Wegener, Pamela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 171
container_title Geomorphology (Amsterdam, Netherlands)
container_volume 277
creator Wohl, Ellen
Rathburn, Sara
Chignell, Stephen
Garrett, Krista
Laurel, DeAnna
Livers, Bridget
Patton, Annette
Records, Rosemary
Richards, Mariah
Schook, Derek M.
Sutfin, Nicholas A.
Wegener, Pamela
description We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.
doi_str_mv 10.1016/j.geomorph.2016.05.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864570764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169555X16302677</els_id><sourcerecordid>1864570764</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</originalsourceid><addsrcrecordid>eNqNkMFOGzEQhq2qlZrSvgLykcsuY2dtr2-gqEAlKAfaComD5diTxGGzXmyHirfHKO25PY1m5vtHmo-QYwYtAyZPt-0a4y6madPy2rcgWoDuHZmxXvFGanH_nszqQjdCiPuP5FPOW6iE0jAjDzd2msK4pkMc16HsfRjtQHNJaHfUxXFEV8JzKC80jLRskH6PqWzoXWnpr2TrbJEQH-lvWzDlDXoaV3QRh5isj5_Jh5UdMn75U4_Iz4uvPxZXzfXt5bfF-XVju06XRmlnmVp6z-1qyTj31iqrWI_CzrkE0E74pZo7yTRAD1Ite-iEZMAtl4h6fkRODnenFJ_2mIvZhexwGOyIcZ8N62UnFCjZ_QcqKqc55xWVB9SlmHPClZlS2Nn0YhiYN_Fma_6KN2_iDQhTtdbg2SGI9efngMlkF3B06EOqNo2P4V8nXgGiqY_a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850769222</pqid></control><display><type>article</type><title>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</title><source>Elsevier ScienceDirect Journals</source><creator>Wohl, Ellen ; Rathburn, Sara ; Chignell, Stephen ; Garrett, Krista ; Laurel, DeAnna ; Livers, Bridget ; Patton, Annette ; Records, Rosemary ; Richards, Mariah ; Schook, Derek M. ; Sutfin, Nicholas A. ; Wegener, Pamela</creator><creatorcontrib>Wohl, Ellen ; Rathburn, Sara ; Chignell, Stephen ; Garrett, Krista ; Laurel, DeAnna ; Livers, Bridget ; Patton, Annette ; Records, Rosemary ; Richards, Mariah ; Schook, Derek M. ; Sutfin, Nicholas A. ; Wegener, Pamela</creatorcontrib><description>We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.</description><identifier>ISSN: 0169-555X</identifier><identifier>EISSN: 1872-695X</identifier><identifier>DOI: 10.1016/j.geomorph.2016.05.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Attenuation ; Connectivity ; Freshwater ; Geomorphology ; GIS ; Indicators ; Mountain river ; Ranking ; Sediment ; Stream gradient ; Streams ; Valleys ; Vegetation ; Water ; Watersheds</subject><ispartof>Geomorphology (Amsterdam, Netherlands), 2017-01, Vol.277, p.171-181</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</citedby><cites>FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169555X16302677$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wohl, Ellen</creatorcontrib><creatorcontrib>Rathburn, Sara</creatorcontrib><creatorcontrib>Chignell, Stephen</creatorcontrib><creatorcontrib>Garrett, Krista</creatorcontrib><creatorcontrib>Laurel, DeAnna</creatorcontrib><creatorcontrib>Livers, Bridget</creatorcontrib><creatorcontrib>Patton, Annette</creatorcontrib><creatorcontrib>Records, Rosemary</creatorcontrib><creatorcontrib>Richards, Mariah</creatorcontrib><creatorcontrib>Schook, Derek M.</creatorcontrib><creatorcontrib>Sutfin, Nicholas A.</creatorcontrib><creatorcontrib>Wegener, Pamela</creatorcontrib><title>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</title><title>Geomorphology (Amsterdam, Netherlands)</title><description>We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.</description><subject>Attenuation</subject><subject>Connectivity</subject><subject>Freshwater</subject><subject>Geomorphology</subject><subject>GIS</subject><subject>Indicators</subject><subject>Mountain river</subject><subject>Ranking</subject><subject>Sediment</subject><subject>Stream gradient</subject><subject>Streams</subject><subject>Valleys</subject><subject>Vegetation</subject><subject>Water</subject><subject>Watersheds</subject><issn>0169-555X</issn><issn>1872-695X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkMFOGzEQhq2qlZrSvgLykcsuY2dtr2-gqEAlKAfaComD5diTxGGzXmyHirfHKO25PY1m5vtHmo-QYwYtAyZPt-0a4y6madPy2rcgWoDuHZmxXvFGanH_nszqQjdCiPuP5FPOW6iE0jAjDzd2msK4pkMc16HsfRjtQHNJaHfUxXFEV8JzKC80jLRskH6PqWzoXWnpr2TrbJEQH-lvWzDlDXoaV3QRh5isj5_Jh5UdMn75U4_Iz4uvPxZXzfXt5bfF-XVju06XRmlnmVp6z-1qyTj31iqrWI_CzrkE0E74pZo7yTRAD1Ite-iEZMAtl4h6fkRODnenFJ_2mIvZhexwGOyIcZ8N62UnFCjZ_QcqKqc55xWVB9SlmHPClZlS2Nn0YhiYN_Fma_6KN2_iDQhTtdbg2SGI9efngMlkF3B06EOqNo2P4V8nXgGiqY_a</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Wohl, Ellen</creator><creator>Rathburn, Sara</creator><creator>Chignell, Stephen</creator><creator>Garrett, Krista</creator><creator>Laurel, DeAnna</creator><creator>Livers, Bridget</creator><creator>Patton, Annette</creator><creator>Records, Rosemary</creator><creator>Richards, Mariah</creator><creator>Schook, Derek M.</creator><creator>Sutfin, Nicholas A.</creator><creator>Wegener, Pamela</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170115</creationdate><title>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</title><author>Wohl, Ellen ; Rathburn, Sara ; Chignell, Stephen ; Garrett, Krista ; Laurel, DeAnna ; Livers, Bridget ; Patton, Annette ; Records, Rosemary ; Richards, Mariah ; Schook, Derek M. ; Sutfin, Nicholas A. ; Wegener, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attenuation</topic><topic>Connectivity</topic><topic>Freshwater</topic><topic>Geomorphology</topic><topic>GIS</topic><topic>Indicators</topic><topic>Mountain river</topic><topic>Ranking</topic><topic>Sediment</topic><topic>Stream gradient</topic><topic>Streams</topic><topic>Valleys</topic><topic>Vegetation</topic><topic>Water</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wohl, Ellen</creatorcontrib><creatorcontrib>Rathburn, Sara</creatorcontrib><creatorcontrib>Chignell, Stephen</creatorcontrib><creatorcontrib>Garrett, Krista</creatorcontrib><creatorcontrib>Laurel, DeAnna</creatorcontrib><creatorcontrib>Livers, Bridget</creatorcontrib><creatorcontrib>Patton, Annette</creatorcontrib><creatorcontrib>Records, Rosemary</creatorcontrib><creatorcontrib>Richards, Mariah</creatorcontrib><creatorcontrib>Schook, Derek M.</creatorcontrib><creatorcontrib>Sutfin, Nicholas A.</creatorcontrib><creatorcontrib>Wegener, Pamela</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geomorphology (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wohl, Ellen</au><au>Rathburn, Sara</au><au>Chignell, Stephen</au><au>Garrett, Krista</au><au>Laurel, DeAnna</au><au>Livers, Bridget</au><au>Patton, Annette</au><au>Records, Rosemary</au><au>Richards, Mariah</au><au>Schook, Derek M.</au><au>Sutfin, Nicholas A.</au><au>Wegener, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</atitle><jtitle>Geomorphology (Amsterdam, Netherlands)</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>277</volume><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0169-555X</issn><eissn>1872-695X</eissn><abstract>We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.geomorph.2016.05.004</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-555X
ispartof Geomorphology (Amsterdam, Netherlands), 2017-01, Vol.277, p.171-181
issn 0169-555X
1872-695X
language eng
recordid cdi_proquest_miscellaneous_1864570764
source Elsevier ScienceDirect Journals
subjects Attenuation
Connectivity
Freshwater
Geomorphology
GIS
Indicators
Mountain river
Ranking
Sediment
Stream gradient
Streams
Valleys
Vegetation
Water
Watersheds
title Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20longitudinal%20stream%20connectivity%20in%20the%20North%20St.%20Vrain%20Creek%20watershed%20of%20Colorado&rft.jtitle=Geomorphology%20(Amsterdam,%20Netherlands)&rft.au=Wohl,%20Ellen&rft.date=2017-01-15&rft.volume=277&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0169-555X&rft.eissn=1872-695X&rft_id=info:doi/10.1016/j.geomorph.2016.05.004&rft_dat=%3Cproquest_cross%3E1864570764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850769222&rft_id=info:pmid/&rft_els_id=S0169555X16302677&rfr_iscdi=true