Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes,...
Gespeichert in:
Veröffentlicht in: | Geomorphology (Amsterdam, Netherlands) Netherlands), 2017-01, Vol.277, p.171-181 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | Geomorphology (Amsterdam, Netherlands) |
container_volume | 277 |
creator | Wohl, Ellen Rathburn, Sara Chignell, Stephen Garrett, Krista Laurel, DeAnna Livers, Bridget Patton, Annette Records, Rosemary Richards, Mariah Schook, Derek M. Sutfin, Nicholas A. Wegener, Pamela |
description | We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network. |
doi_str_mv | 10.1016/j.geomorph.2016.05.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864570764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169555X16302677</els_id><sourcerecordid>1864570764</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</originalsourceid><addsrcrecordid>eNqNkMFOGzEQhq2qlZrSvgLykcsuY2dtr2-gqEAlKAfaComD5diTxGGzXmyHirfHKO25PY1m5vtHmo-QYwYtAyZPt-0a4y6madPy2rcgWoDuHZmxXvFGanH_nszqQjdCiPuP5FPOW6iE0jAjDzd2msK4pkMc16HsfRjtQHNJaHfUxXFEV8JzKC80jLRskH6PqWzoXWnpr2TrbJEQH-lvWzDlDXoaV3QRh5isj5_Jh5UdMn75U4_Iz4uvPxZXzfXt5bfF-XVju06XRmlnmVp6z-1qyTj31iqrWI_CzrkE0E74pZo7yTRAD1Ite-iEZMAtl4h6fkRODnenFJ_2mIvZhexwGOyIcZ8N62UnFCjZ_QcqKqc55xWVB9SlmHPClZlS2Nn0YhiYN_Fma_6KN2_iDQhTtdbg2SGI9efngMlkF3B06EOqNo2P4V8nXgGiqY_a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850769222</pqid></control><display><type>article</type><title>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</title><source>Elsevier ScienceDirect Journals</source><creator>Wohl, Ellen ; Rathburn, Sara ; Chignell, Stephen ; Garrett, Krista ; Laurel, DeAnna ; Livers, Bridget ; Patton, Annette ; Records, Rosemary ; Richards, Mariah ; Schook, Derek M. ; Sutfin, Nicholas A. ; Wegener, Pamela</creator><creatorcontrib>Wohl, Ellen ; Rathburn, Sara ; Chignell, Stephen ; Garrett, Krista ; Laurel, DeAnna ; Livers, Bridget ; Patton, Annette ; Records, Rosemary ; Richards, Mariah ; Schook, Derek M. ; Sutfin, Nicholas A. ; Wegener, Pamela</creatorcontrib><description>We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.</description><identifier>ISSN: 0169-555X</identifier><identifier>EISSN: 1872-695X</identifier><identifier>DOI: 10.1016/j.geomorph.2016.05.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Attenuation ; Connectivity ; Freshwater ; Geomorphology ; GIS ; Indicators ; Mountain river ; Ranking ; Sediment ; Stream gradient ; Streams ; Valleys ; Vegetation ; Water ; Watersheds</subject><ispartof>Geomorphology (Amsterdam, Netherlands), 2017-01, Vol.277, p.171-181</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</citedby><cites>FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169555X16302677$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Wohl, Ellen</creatorcontrib><creatorcontrib>Rathburn, Sara</creatorcontrib><creatorcontrib>Chignell, Stephen</creatorcontrib><creatorcontrib>Garrett, Krista</creatorcontrib><creatorcontrib>Laurel, DeAnna</creatorcontrib><creatorcontrib>Livers, Bridget</creatorcontrib><creatorcontrib>Patton, Annette</creatorcontrib><creatorcontrib>Records, Rosemary</creatorcontrib><creatorcontrib>Richards, Mariah</creatorcontrib><creatorcontrib>Schook, Derek M.</creatorcontrib><creatorcontrib>Sutfin, Nicholas A.</creatorcontrib><creatorcontrib>Wegener, Pamela</creatorcontrib><title>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</title><title>Geomorphology (Amsterdam, Netherlands)</title><description>We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.</description><subject>Attenuation</subject><subject>Connectivity</subject><subject>Freshwater</subject><subject>Geomorphology</subject><subject>GIS</subject><subject>Indicators</subject><subject>Mountain river</subject><subject>Ranking</subject><subject>Sediment</subject><subject>Stream gradient</subject><subject>Streams</subject><subject>Valleys</subject><subject>Vegetation</subject><subject>Water</subject><subject>Watersheds</subject><issn>0169-555X</issn><issn>1872-695X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkMFOGzEQhq2qlZrSvgLykcsuY2dtr2-gqEAlKAfaComD5diTxGGzXmyHirfHKO25PY1m5vtHmo-QYwYtAyZPt-0a4y6madPy2rcgWoDuHZmxXvFGanH_nszqQjdCiPuP5FPOW6iE0jAjDzd2msK4pkMc16HsfRjtQHNJaHfUxXFEV8JzKC80jLRskH6PqWzoXWnpr2TrbJEQH-lvWzDlDXoaV3QRh5isj5_Jh5UdMn75U4_Iz4uvPxZXzfXt5bfF-XVju06XRmlnmVp6z-1qyTj31iqrWI_CzrkE0E74pZo7yTRAD1Ite-iEZMAtl4h6fkRODnenFJ_2mIvZhexwGOyIcZ8N62UnFCjZ_QcqKqc55xWVB9SlmHPClZlS2Nn0YhiYN_Fma_6KN2_iDQhTtdbg2SGI9efngMlkF3B06EOqNo2P4V8nXgGiqY_a</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Wohl, Ellen</creator><creator>Rathburn, Sara</creator><creator>Chignell, Stephen</creator><creator>Garrett, Krista</creator><creator>Laurel, DeAnna</creator><creator>Livers, Bridget</creator><creator>Patton, Annette</creator><creator>Records, Rosemary</creator><creator>Richards, Mariah</creator><creator>Schook, Derek M.</creator><creator>Sutfin, Nicholas A.</creator><creator>Wegener, Pamela</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20170115</creationdate><title>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</title><author>Wohl, Ellen ; Rathburn, Sara ; Chignell, Stephen ; Garrett, Krista ; Laurel, DeAnna ; Livers, Bridget ; Patton, Annette ; Records, Rosemary ; Richards, Mariah ; Schook, Derek M. ; Sutfin, Nicholas A. ; Wegener, Pamela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-79ca17bdd2afb122daa7a718e5a326009c5db73c619008067b80456102a26ee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attenuation</topic><topic>Connectivity</topic><topic>Freshwater</topic><topic>Geomorphology</topic><topic>GIS</topic><topic>Indicators</topic><topic>Mountain river</topic><topic>Ranking</topic><topic>Sediment</topic><topic>Stream gradient</topic><topic>Streams</topic><topic>Valleys</topic><topic>Vegetation</topic><topic>Water</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wohl, Ellen</creatorcontrib><creatorcontrib>Rathburn, Sara</creatorcontrib><creatorcontrib>Chignell, Stephen</creatorcontrib><creatorcontrib>Garrett, Krista</creatorcontrib><creatorcontrib>Laurel, DeAnna</creatorcontrib><creatorcontrib>Livers, Bridget</creatorcontrib><creatorcontrib>Patton, Annette</creatorcontrib><creatorcontrib>Records, Rosemary</creatorcontrib><creatorcontrib>Richards, Mariah</creatorcontrib><creatorcontrib>Schook, Derek M.</creatorcontrib><creatorcontrib>Sutfin, Nicholas A.</creatorcontrib><creatorcontrib>Wegener, Pamela</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geomorphology (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wohl, Ellen</au><au>Rathburn, Sara</au><au>Chignell, Stephen</au><au>Garrett, Krista</au><au>Laurel, DeAnna</au><au>Livers, Bridget</au><au>Patton, Annette</au><au>Records, Rosemary</au><au>Richards, Mariah</au><au>Schook, Derek M.</au><au>Sutfin, Nicholas A.</au><au>Wegener, Pamela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado</atitle><jtitle>Geomorphology (Amsterdam, Netherlands)</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>277</volume><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0169-555X</issn><eissn>1872-695X</eissn><abstract>We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-based understanding of relative connectivity within the watershed. We conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.geomorph.2016.05.004</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-555X |
ispartof | Geomorphology (Amsterdam, Netherlands), 2017-01, Vol.277, p.171-181 |
issn | 0169-555X 1872-695X |
language | eng |
recordid | cdi_proquest_miscellaneous_1864570764 |
source | Elsevier ScienceDirect Journals |
subjects | Attenuation Connectivity Freshwater Geomorphology GIS Indicators Mountain river Ranking Sediment Stream gradient Streams Valleys Vegetation Water Watersheds |
title | Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20longitudinal%20stream%20connectivity%20in%20the%20North%20St.%20Vrain%20Creek%20watershed%20of%20Colorado&rft.jtitle=Geomorphology%20(Amsterdam,%20Netherlands)&rft.au=Wohl,%20Ellen&rft.date=2017-01-15&rft.volume=277&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0169-555X&rft.eissn=1872-695X&rft_id=info:doi/10.1016/j.geomorph.2016.05.004&rft_dat=%3Cproquest_cross%3E1864570764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850769222&rft_id=info:pmid/&rft_els_id=S0169555X16302677&rfr_iscdi=true |