Estimation of Flat-topped Gaussian distribution with application in system identification

Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2016-12, Vol.30 (12), p.726-738
Hauptverfasser: Tan, Ruomu, Huang, Biao, Li, Zukui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 12
container_start_page 726
container_title Journal of chemometrics
container_volume 30
creator Tan, Ruomu
Huang, Biao
Li, Zukui
description Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty. Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.
doi_str_mv 10.1002/cem.2852
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864562357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4269949921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</originalsourceid><addsrcrecordid>eNp10E1LwzAYwPEgCs4p-BEKXrx05q1pepQxp7DpRZmeQpoXzOza2qTMfXszNxQFIZDD88tD-ANwjuAIQYivlFmNMM_wARggWBQpwvz5EAwg5ywtCCfH4MT7JYRxRugAvEx8cCsZXFMnjU1uKhnS0LSt0clU9t47WSfa-dC5sv9CaxdeE9m2lVO7V65O_MYHs0qcNnVwdj84BUdWVt6c7e8heLqZPI5v09nD9G58PUsVYRSnFitrkdJKM4KxgarIOeTaFoUtLSs1JrzUJaMyozoeqTOOtTaQK6IR5ZYMweVub9s1773xQaycV6aqZG2a3gvEGc0YJlke6cUfumz6ro6_i4pmBYQsoz8LVdd43xkr2i4m6jYCQbFtLGJjsW0cabqja1eZzb9OjCfz3z4WNR_fXnZvguUkz8TifipynC_QjM7FnHwCK2KN5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845900654</pqid></control><display><type>article</type><title>Estimation of Flat-topped Gaussian distribution with application in system identification</title><source>Access via Wiley Online Library</source><creator>Tan, Ruomu ; Huang, Biao ; Li, Zukui</creator><creatorcontrib>Tan, Ruomu ; Huang, Biao ; Li, Zukui</creatorcontrib><description>Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty. Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2852</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Additives ; Computer simulation ; Economic models ; Flat-topped Gaussian distribution ; Identification ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimation ; moment fitting strategy ; Normal distribution ; Parameter estimation ; quantization error ; System identification ; Uncertainty</subject><ispartof>Journal of chemometrics, 2016-12, Vol.30 (12), p.726-738</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</citedby><cites>FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tan, Ruomu</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><creatorcontrib>Li, Zukui</creatorcontrib><title>Estimation of Flat-topped Gaussian distribution with application in system identification</title><title>Journal of chemometrics</title><addtitle>Journal of Chemometrics</addtitle><description>Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty. Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.</description><subject>Additives</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Flat-topped Gaussian distribution</subject><subject>Identification</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>moment fitting strategy</subject><subject>Normal distribution</subject><subject>Parameter estimation</subject><subject>quantization error</subject><subject>System identification</subject><subject>Uncertainty</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYwPEgCs4p-BEKXrx05q1pepQxp7DpRZmeQpoXzOza2qTMfXszNxQFIZDD88tD-ANwjuAIQYivlFmNMM_wARggWBQpwvz5EAwg5ywtCCfH4MT7JYRxRugAvEx8cCsZXFMnjU1uKhnS0LSt0clU9t47WSfa-dC5sv9CaxdeE9m2lVO7V65O_MYHs0qcNnVwdj84BUdWVt6c7e8heLqZPI5v09nD9G58PUsVYRSnFitrkdJKM4KxgarIOeTaFoUtLSs1JrzUJaMyozoeqTOOtTaQK6IR5ZYMweVub9s1773xQaycV6aqZG2a3gvEGc0YJlke6cUfumz6ro6_i4pmBYQsoz8LVdd43xkr2i4m6jYCQbFtLGJjsW0cabqja1eZzb9OjCfz3z4WNR_fXnZvguUkz8TifipynC_QjM7FnHwCK2KN5A</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Tan, Ruomu</creator><creator>Huang, Biao</creator><creator>Li, Zukui</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Estimation of Flat-topped Gaussian distribution with application in system identification</title><author>Tan, Ruomu ; Huang, Biao ; Li, Zukui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Flat-topped Gaussian distribution</topic><topic>Identification</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>moment fitting strategy</topic><topic>Normal distribution</topic><topic>Parameter estimation</topic><topic>quantization error</topic><topic>System identification</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ruomu</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><creatorcontrib>Li, Zukui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ruomu</au><au>Huang, Biao</au><au>Li, Zukui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Flat-topped Gaussian distribution with application in system identification</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>Journal of Chemometrics</addtitle><date>2016-12</date><risdate>2016</risdate><volume>30</volume><issue>12</issue><spage>726</spage><epage>738</epage><pages>726-738</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty. Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2852</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2016-12, Vol.30 (12), p.726-738
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_miscellaneous_1864562357
source Access via Wiley Online Library
subjects Additives
Computer simulation
Economic models
Flat-topped Gaussian distribution
Identification
Mathematical analysis
Mathematical models
Maximum likelihood estimation
moment fitting strategy
Normal distribution
Parameter estimation
quantization error
System identification
Uncertainty
title Estimation of Flat-topped Gaussian distribution with application in system identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Flat-topped%20Gaussian%20distribution%20with%20application%20in%20system%20identification&rft.jtitle=Journal%20of%20chemometrics&rft.au=Tan,%20Ruomu&rft.date=2016-12&rft.volume=30&rft.issue=12&rft.spage=726&rft.epage=738&rft.pages=726-738&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2852&rft_dat=%3Cproquest_cross%3E4269949921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845900654&rft_id=info:pmid/&rfr_iscdi=true