Estimation of Flat-topped Gaussian distribution with application in system identification
Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this pap...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2016-12, Vol.30 (12), p.726-738 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 738 |
---|---|
container_issue | 12 |
container_start_page | 726 |
container_title | Journal of chemometrics |
container_volume | 30 |
creator | Tan, Ruomu Huang, Biao Li, Zukui |
description | Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty.
Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness. |
doi_str_mv | 10.1002/cem.2852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864562357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4269949921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</originalsourceid><addsrcrecordid>eNp10E1LwzAYwPEgCs4p-BEKXrx05q1pepQxp7DpRZmeQpoXzOza2qTMfXszNxQFIZDD88tD-ANwjuAIQYivlFmNMM_wARggWBQpwvz5EAwg5ywtCCfH4MT7JYRxRugAvEx8cCsZXFMnjU1uKhnS0LSt0clU9t47WSfa-dC5sv9CaxdeE9m2lVO7V65O_MYHs0qcNnVwdj84BUdWVt6c7e8heLqZPI5v09nD9G58PUsVYRSnFitrkdJKM4KxgarIOeTaFoUtLSs1JrzUJaMyozoeqTOOtTaQK6IR5ZYMweVub9s1773xQaycV6aqZG2a3gvEGc0YJlke6cUfumz6ro6_i4pmBYQsoz8LVdd43xkr2i4m6jYCQbFtLGJjsW0cabqja1eZzb9OjCfz3z4WNR_fXnZvguUkz8TifipynC_QjM7FnHwCK2KN5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845900654</pqid></control><display><type>article</type><title>Estimation of Flat-topped Gaussian distribution with application in system identification</title><source>Access via Wiley Online Library</source><creator>Tan, Ruomu ; Huang, Biao ; Li, Zukui</creator><creatorcontrib>Tan, Ruomu ; Huang, Biao ; Li, Zukui</creatorcontrib><description>Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty.
Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2852</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Additives ; Computer simulation ; Economic models ; Flat-topped Gaussian distribution ; Identification ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimation ; moment fitting strategy ; Normal distribution ; Parameter estimation ; quantization error ; System identification ; Uncertainty</subject><ispartof>Journal of chemometrics, 2016-12, Vol.30 (12), p.726-738</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</citedby><cites>FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2852$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2852$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tan, Ruomu</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><creatorcontrib>Li, Zukui</creatorcontrib><title>Estimation of Flat-topped Gaussian distribution with application in system identification</title><title>Journal of chemometrics</title><addtitle>Journal of Chemometrics</addtitle><description>Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty.
Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.</description><subject>Additives</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Flat-topped Gaussian distribution</subject><subject>Identification</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>moment fitting strategy</subject><subject>Normal distribution</subject><subject>Parameter estimation</subject><subject>quantization error</subject><subject>System identification</subject><subject>Uncertainty</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10E1LwzAYwPEgCs4p-BEKXrx05q1pepQxp7DpRZmeQpoXzOza2qTMfXszNxQFIZDD88tD-ANwjuAIQYivlFmNMM_wARggWBQpwvz5EAwg5ywtCCfH4MT7JYRxRugAvEx8cCsZXFMnjU1uKhnS0LSt0clU9t47WSfa-dC5sv9CaxdeE9m2lVO7V65O_MYHs0qcNnVwdj84BUdWVt6c7e8heLqZPI5v09nD9G58PUsVYRSnFitrkdJKM4KxgarIOeTaFoUtLSs1JrzUJaMyozoeqTOOtTaQK6IR5ZYMweVub9s1773xQaycV6aqZG2a3gvEGc0YJlke6cUfumz6ro6_i4pmBYQsoz8LVdd43xkr2i4m6jYCQbFtLGJjsW0cabqja1eZzb9OjCfz3z4WNR_fXnZvguUkz8TifipynC_QjM7FnHwCK2KN5A</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Tan, Ruomu</creator><creator>Huang, Biao</creator><creator>Li, Zukui</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201612</creationdate><title>Estimation of Flat-topped Gaussian distribution with application in system identification</title><author>Tan, Ruomu ; Huang, Biao ; Li, Zukui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3642-f2cff1cdcd6322e0c97808df99fbf6bd238bdb64a54d54dad582dde08c3d148f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Additives</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Flat-topped Gaussian distribution</topic><topic>Identification</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>moment fitting strategy</topic><topic>Normal distribution</topic><topic>Parameter estimation</topic><topic>quantization error</topic><topic>System identification</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Ruomu</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><creatorcontrib>Li, Zukui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Ruomu</au><au>Huang, Biao</au><au>Li, Zukui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Flat-topped Gaussian distribution with application in system identification</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>Journal of Chemometrics</addtitle><date>2016-12</date><risdate>2016</risdate><volume>30</volume><issue>12</issue><spage>726</spage><epage>738</epage><pages>726-738</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Uniformly distributed uncertainty exists in industrial process; additive error introduced by quantization is an example. To be able to handle additive uniform and Gaussian measurement uncertainty simultaneously in system identification, the Flat‐topped Gaussian distribution is considered in this paper as an alternative to the Gaussian distribution. To incorporate this type of uncertainty in the maximum likelihood estimation framework, the explicit form of its density function is of necessity. This work proposes an approach for obtaining both the functional structure and corresponding parameter estimation of Flat‐topped Gaussian distribution by a moment fitting strategy. The performance of the proposed approximation function is verified by comparison to the Flat‐topped Gaussian distributed random variable with different Gaussian and uniform components. Results of numerical simulations and industrial applications in system identification are presented to verify the effectiveness of the Flat‐topped Gaussian distribution for noise distribution in handling additional uniform uncertainty.
Flat‐topped Gaussian distribution is considered as the noise distribution in this article in order to handle the uniform and Gaussain measurement uncertainties simultaneously in system identification. This article proposes a parameter estimation approach for the Flat‐topped Gaussian distribution and formulates the system identification problem under maximum likelihood estimation framework. Numerical simulations and industrial case study are presented for its effectiveness.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2852</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2016-12, Vol.30 (12), p.726-738 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_miscellaneous_1864562357 |
source | Access via Wiley Online Library |
subjects | Additives Computer simulation Economic models Flat-topped Gaussian distribution Identification Mathematical analysis Mathematical models Maximum likelihood estimation moment fitting strategy Normal distribution Parameter estimation quantization error System identification Uncertainty |
title | Estimation of Flat-topped Gaussian distribution with application in system identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Flat-topped%20Gaussian%20distribution%20with%20application%20in%20system%20identification&rft.jtitle=Journal%20of%20chemometrics&rft.au=Tan,%20Ruomu&rft.date=2016-12&rft.volume=30&rft.issue=12&rft.spage=726&rft.epage=738&rft.pages=726-738&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2852&rft_dat=%3Cproquest_cross%3E4269949921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845900654&rft_id=info:pmid/&rfr_iscdi=true |