Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method
In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional...
Gespeichert in:
Veröffentlicht in: | TWMS journal of applied and engineering mathematics 2014-07, Vol.4 (2), p.155-168 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | TWMS journal of applied and engineering mathematics |
container_volume | 4 |
creator | Esen, A Ucar, Y Yagmurlu, M Tasbozan, O |
description | In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864562260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396325346</galeid><sourcerecordid>A396325346</sourcerecordid><originalsourceid>FETCH-LOGICAL-g213t-2186bd94210f85ffb039a4b869b44e0979bbde5095fcafaee054a4097fb6ce0f3</originalsourceid><addsrcrecordid>eNptkN9LwzAQx4soOOb-h4AvvlTyq2nzOIZOYaCgPpekvczMNnFNOvG_N8OBQ3b3cF_uPveFu7NsQgkXOSG8PD_Sl9kshA1OUQlRYjbJ-hff7axbIzOoJlrvVIdaa8wYkkbKtScH-ZfaAYLtqPaTgPQ3eoY4-F2-VB0MH9YhY52NiemgBxdRD_Hdt1fZhVFdgNmhTrO3-7vXxUO-elo-LuarfE0JizklldCt5JRgUxXGaMyk4roSUnMOWJZS6xYKLAvTKKMAcMEVT32jRQPYsGl28-v7OfjtCCHWvQ0NdJ1y4MdQJ39eCEoFTuj1P3TjxyFdmyjBJS6pIOSPWqf7auuMj-kte9N6zqRgtGBcJOr2BJWyhd423oGxqX-08AN4pYIN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1649072611</pqid></control><display><type>article</type><title>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Esen, A ; Ucar, Y ; Yagmurlu, M ; Tasbozan, O</creator><creatorcontrib>Esen, A ; Ucar, Y ; Yagmurlu, M ; Tasbozan, O</creatorcontrib><description>In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Analysis ; Calculus ; Derivatives ; Diffusion ; Finite element analysis ; Finite element method ; Formulas (mathematics) ; Heat equation ; Mathematical analysis ; Mathematical models ; Methods ; Norms ; Quadratic programming ; Wave equation</subject><ispartof>TWMS journal of applied and engineering mathematics, 2014-07, Vol.4 (2), p.155-168</ispartof><rights>COPYRIGHT 2014 Turkic World Mathematical Society</rights><rights>Copyright Elman Hasanoglu 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Esen, A</creatorcontrib><creatorcontrib>Ucar, Y</creatorcontrib><creatorcontrib>Yagmurlu, M</creatorcontrib><creatorcontrib>Tasbozan, O</creatorcontrib><title>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</title><title>TWMS journal of applied and engineering mathematics</title><description>In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60</description><subject>Analysis</subject><subject>Calculus</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Formulas (mathematics)</subject><subject>Heat equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Norms</subject><subject>Quadratic programming</subject><subject>Wave equation</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkN9LwzAQx4soOOb-h4AvvlTyq2nzOIZOYaCgPpekvczMNnFNOvG_N8OBQ3b3cF_uPveFu7NsQgkXOSG8PD_Sl9kshA1OUQlRYjbJ-hff7axbIzOoJlrvVIdaa8wYkkbKtScH-ZfaAYLtqPaTgPQ3eoY4-F2-VB0MH9YhY52NiemgBxdRD_Hdt1fZhVFdgNmhTrO3-7vXxUO-elo-LuarfE0JizklldCt5JRgUxXGaMyk4roSUnMOWJZS6xYKLAvTKKMAcMEVT32jRQPYsGl28-v7OfjtCCHWvQ0NdJ1y4MdQJ39eCEoFTuj1P3TjxyFdmyjBJS6pIOSPWqf7auuMj-kte9N6zqRgtGBcJOr2BJWyhd423oGxqX-08AN4pYIN</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Esen, A</creator><creator>Ucar, Y</creator><creator>Yagmurlu, M</creator><creator>Tasbozan, O</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</title><author>Esen, A ; Ucar, Y ; Yagmurlu, M ; Tasbozan, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g213t-2186bd94210f85ffb039a4b869b44e0979bbde5095fcafaee054a4097fb6ce0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Calculus</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Formulas (mathematics)</topic><topic>Heat equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Norms</topic><topic>Quadratic programming</topic><topic>Wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esen, A</creatorcontrib><creatorcontrib>Ucar, Y</creatorcontrib><creatorcontrib>Yagmurlu, M</creatorcontrib><creatorcontrib>Tasbozan, O</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esen, A</au><au>Ucar, Y</au><au>Yagmurlu, M</au><au>Tasbozan, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>4</volume><issue>2</issue><spage>155</spage><epage>168</epage><pages>155-168</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2146-1147 |
ispartof | TWMS journal of applied and engineering mathematics, 2014-07, Vol.4 (2), p.155-168 |
issn | 2146-1147 2146-1147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864562260 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Calculus Derivatives Diffusion Finite element analysis Finite element method Formulas (mathematics) Heat equation Mathematical analysis Mathematical models Methods Norms Quadratic programming Wave equation |
title | Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20fractional%20diffusion%20and%20fractional%20diffusion-wave%20equations%20by%20Petrov-Galerkin%20finite%20element%20method&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Esen,%20A&rft.date=2014-07-01&rft.volume=4&rft.issue=2&rft.spage=155&rft.epage=168&rft.pages=155-168&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA396325346%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1649072611&rft_id=info:pmid/&rft_galeid=A396325346&rfr_iscdi=true |