Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method

In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TWMS journal of applied and engineering mathematics 2014-07, Vol.4 (2), p.155-168
Hauptverfasser: Esen, A, Ucar, Y, Yagmurlu, M, Tasbozan, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 2
container_start_page 155
container_title TWMS journal of applied and engineering mathematics
container_volume 4
creator Esen, A
Ucar, Y
Yagmurlu, M
Tasbozan, O
description In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864562260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A396325346</galeid><sourcerecordid>A396325346</sourcerecordid><originalsourceid>FETCH-LOGICAL-g213t-2186bd94210f85ffb039a4b869b44e0979bbde5095fcafaee054a4097fb6ce0f3</originalsourceid><addsrcrecordid>eNptkN9LwzAQx4soOOb-h4AvvlTyq2nzOIZOYaCgPpekvczMNnFNOvG_N8OBQ3b3cF_uPveFu7NsQgkXOSG8PD_Sl9kshA1OUQlRYjbJ-hff7axbIzOoJlrvVIdaa8wYkkbKtScH-ZfaAYLtqPaTgPQ3eoY4-F2-VB0MH9YhY52NiemgBxdRD_Hdt1fZhVFdgNmhTrO3-7vXxUO-elo-LuarfE0JizklldCt5JRgUxXGaMyk4roSUnMOWJZS6xYKLAvTKKMAcMEVT32jRQPYsGl28-v7OfjtCCHWvQ0NdJ1y4MdQJ39eCEoFTuj1P3TjxyFdmyjBJS6pIOSPWqf7auuMj-kte9N6zqRgtGBcJOr2BJWyhd423oGxqX-08AN4pYIN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1649072611</pqid></control><display><type>article</type><title>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Esen, A ; Ucar, Y ; Yagmurlu, M ; Tasbozan, O</creator><creatorcontrib>Esen, A ; Ucar, Y ; Yagmurlu, M ; Tasbozan, O</creatorcontrib><description>In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><subject>Analysis ; Calculus ; Derivatives ; Diffusion ; Finite element analysis ; Finite element method ; Formulas (mathematics) ; Heat equation ; Mathematical analysis ; Mathematical models ; Methods ; Norms ; Quadratic programming ; Wave equation</subject><ispartof>TWMS journal of applied and engineering mathematics, 2014-07, Vol.4 (2), p.155-168</ispartof><rights>COPYRIGHT 2014 Turkic World Mathematical Society</rights><rights>Copyright Elman Hasanoglu 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Esen, A</creatorcontrib><creatorcontrib>Ucar, Y</creatorcontrib><creatorcontrib>Yagmurlu, M</creatorcontrib><creatorcontrib>Tasbozan, O</creatorcontrib><title>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</title><title>TWMS journal of applied and engineering mathematics</title><description>In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60</description><subject>Analysis</subject><subject>Calculus</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Formulas (mathematics)</subject><subject>Heat equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Norms</subject><subject>Quadratic programming</subject><subject>Wave equation</subject><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkN9LwzAQx4soOOb-h4AvvlTyq2nzOIZOYaCgPpekvczMNnFNOvG_N8OBQ3b3cF_uPveFu7NsQgkXOSG8PD_Sl9kshA1OUQlRYjbJ-hff7axbIzOoJlrvVIdaa8wYkkbKtScH-ZfaAYLtqPaTgPQ3eoY4-F2-VB0MH9YhY52NiemgBxdRD_Hdt1fZhVFdgNmhTrO3-7vXxUO-elo-LuarfE0JizklldCt5JRgUxXGaMyk4roSUnMOWJZS6xYKLAvTKKMAcMEVT32jRQPYsGl28-v7OfjtCCHWvQ0NdJ1y4MdQJ39eCEoFTuj1P3TjxyFdmyjBJS6pIOSPWqf7auuMj-kte9N6zqRgtGBcJOr2BJWyhd423oGxqX-08AN4pYIN</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Esen, A</creator><creator>Ucar, Y</creator><creator>Yagmurlu, M</creator><creator>Tasbozan, O</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140701</creationdate><title>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</title><author>Esen, A ; Ucar, Y ; Yagmurlu, M ; Tasbozan, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g213t-2186bd94210f85ffb039a4b869b44e0979bbde5095fcafaee054a4097fb6ce0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Calculus</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Formulas (mathematics)</topic><topic>Heat equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Norms</topic><topic>Quadratic programming</topic><topic>Wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esen, A</creatorcontrib><creatorcontrib>Ucar, Y</creatorcontrib><creatorcontrib>Yagmurlu, M</creatorcontrib><creatorcontrib>Tasbozan, O</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esen, A</au><au>Ucar, Y</au><au>Yagmurlu, M</au><au>Tasbozan, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>4</volume><issue>2</issue><spage>155</spage><epage>168</epage><pages>155-168</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>In the last few years, it has become highly evident that fractional calculus has been widely used in several areas of science. Because of this fact, their numerical solutions also have become urgently important. In this manuscript, numerical solutions of both the fractional diffusion and fractional diffusion-wave equations have been obtained by a Petrov-Galerkin finite element method using quadratic B-spline base functions as trial functions and linear B-spline base functions as the test functions. In those equations, fractional derivatives are used in terms of the Caputo sense. While the L1 discretizaton formula has been applied to fractional diffusion equation, the L2 discretizaton formula has been applied to the fractional diffusion-wave equation. Finally, the error norms [L.sub.2] and [L.sub.∞] have been calculated for testing the accuracy of the proposed scheme. Keywords: Finite element method, Petrov-Galerkin method, Fractional diffusion equation, Fractional diffusion-wave equation, Quadratic B-Spline, Linear B-Spline. AMS Subject Classification: 97N40, 65D07, 74S05, 26A33, 34A08, 65L60</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2146-1147
ispartof TWMS journal of applied and engineering mathematics, 2014-07, Vol.4 (2), p.155-168
issn 2146-1147
2146-1147
language eng
recordid cdi_proquest_miscellaneous_1864562260
source EZB-FREE-00999 freely available EZB journals
subjects Analysis
Calculus
Derivatives
Diffusion
Finite element analysis
Finite element method
Formulas (mathematics)
Heat equation
Mathematical analysis
Mathematical models
Methods
Norms
Quadratic programming
Wave equation
title Solving fractional diffusion and fractional diffusion-wave equations by Petrov-Galerkin finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20fractional%20diffusion%20and%20fractional%20diffusion-wave%20equations%20by%20Petrov-Galerkin%20finite%20element%20method&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Esen,%20A&rft.date=2014-07-01&rft.volume=4&rft.issue=2&rft.spage=155&rft.epage=168&rft.pages=155-168&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA396325346%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1649072611&rft_id=info:pmid/&rft_galeid=A396325346&rfr_iscdi=true