Simple Solution to the Three Point Resection Problem
AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solve...
Gespeichert in:
Veröffentlicht in: | Journal of surveying engineering 2013-08, Vol.139 (3), p.120-125 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 3 |
container_start_page | 120 |
container_title | Journal of surveying engineering |
container_volume | 139 |
creator | Ligas, Marcin |
description | AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths. |
doi_str_mv | 10.1061/(ASCE)SU.1943-5428.0000104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864561628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864561628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnadzA9pQe7klaW7d5CSH8g0FAnZ6HYa-JgW6lkH_r2lZuQW-eysDszsB8hj4xGjEr2PJvni-VTvo1YJiCMBU8j6sWouCKTy-6aTGgCEGYihlty59zBW0RC2YSIvG6PDQa5aYa-Nl3Qm6DfY7DZW8RgbequD77QYfF3XFuza7C9JzeVbhw-nOeUbF-Xm8V7uPp8-1jMV6EGwfswKUsJvCiSDBArBKgyLVIpOUCseQFl4aV1tUOgwGlZcZAUZcplirHIYpiS2an3aM33gK5Xbe0KbBrdoRmcYqkUsWSSp976crIW1jhnsVJHW7fa_ihG1YhKqRGVyrdqxKJGLOqMyoflKax9uzqYwXb-rUvy_-AvYhNstg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864561628</pqid></control><display><type>article</type><title>Simple Solution to the Three Point Resection Problem</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ligas, Marcin</creator><creatorcontrib>Ligas, Marcin</creatorcontrib><description>AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.</description><identifier>ISSN: 0733-9453</identifier><identifier>EISSN: 1943-5428</identifier><identifier>DOI: 10.1061/(ASCE)SU.1943-5428.0000104</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Azimuth ; Derivation ; Formulas (mathematics) ; Intersections ; Mathematical analysis ; Quadratic equations ; Straight lines ; Surveying ; Technical Papers</subject><ispartof>Journal of surveying engineering, 2013-08, Vol.139 (3), p.120-125</ispartof><rights>2013 American Society of Civil Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</citedby><cites>FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)SU.1943-5428.0000104$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)SU.1943-5428.0000104$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids></links><search><creatorcontrib>Ligas, Marcin</creatorcontrib><title>Simple Solution to the Three Point Resection Problem</title><title>Journal of surveying engineering</title><description>AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.</description><subject>Azimuth</subject><subject>Derivation</subject><subject>Formulas (mathematics)</subject><subject>Intersections</subject><subject>Mathematical analysis</subject><subject>Quadratic equations</subject><subject>Straight lines</subject><subject>Surveying</subject><subject>Technical Papers</subject><issn>0733-9453</issn><issn>1943-5428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnadzA9pQe7klaW7d5CSH8g0FAnZ6HYa-JgW6lkH_r2lZuQW-eysDszsB8hj4xGjEr2PJvni-VTvo1YJiCMBU8j6sWouCKTy-6aTGgCEGYihlty59zBW0RC2YSIvG6PDQa5aYa-Nl3Qm6DfY7DZW8RgbequD77QYfF3XFuza7C9JzeVbhw-nOeUbF-Xm8V7uPp8-1jMV6EGwfswKUsJvCiSDBArBKgyLVIpOUCseQFl4aV1tUOgwGlZcZAUZcplirHIYpiS2an3aM33gK5Xbe0KbBrdoRmcYqkUsWSSp976crIW1jhnsVJHW7fa_ihG1YhKqRGVyrdqxKJGLOqMyoflKax9uzqYwXb-rUvy_-AvYhNstg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ligas, Marcin</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130801</creationdate><title>Simple Solution to the Three Point Resection Problem</title><author>Ligas, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Azimuth</topic><topic>Derivation</topic><topic>Formulas (mathematics)</topic><topic>Intersections</topic><topic>Mathematical analysis</topic><topic>Quadratic equations</topic><topic>Straight lines</topic><topic>Surveying</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ligas, Marcin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of surveying engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ligas, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Solution to the Three Point Resection Problem</atitle><jtitle>Journal of surveying engineering</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>139</volume><issue>3</issue><spage>120</spage><epage>125</epage><pages>120-125</pages><issn>0733-9453</issn><eissn>1943-5428</eissn><abstract>AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)SU.1943-5428.0000104</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9453 |
ispartof | Journal of surveying engineering, 2013-08, Vol.139 (3), p.120-125 |
issn | 0733-9453 1943-5428 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864561628 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Azimuth Derivation Formulas (mathematics) Intersections Mathematical analysis Quadratic equations Straight lines Surveying Technical Papers |
title | Simple Solution to the Three Point Resection Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Solution%20to%20the%20Three%20Point%20Resection%20Problem&rft.jtitle=Journal%20of%20surveying%20engineering&rft.au=Ligas,%20Marcin&rft.date=2013-08-01&rft.volume=139&rft.issue=3&rft.spage=120&rft.epage=125&rft.pages=120-125&rft.issn=0733-9453&rft.eissn=1943-5428&rft_id=info:doi/10.1061/(ASCE)SU.1943-5428.0000104&rft_dat=%3Cproquest_cross%3E1864561628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864561628&rft_id=info:pmid/&rfr_iscdi=true |