Simple Solution to the Three Point Resection Problem

AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of surveying engineering 2013-08, Vol.139 (3), p.120-125
1. Verfasser: Ligas, Marcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 3
container_start_page 120
container_title Journal of surveying engineering
container_volume 139
creator Ligas, Marcin
description AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.
doi_str_mv 10.1061/(ASCE)SU.1943-5428.0000104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864561628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864561628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</originalsourceid><addsrcrecordid>eNp1kM1qwzAQhEVpoWnadzA9pQe7klaW7d5CSH8g0FAnZ6HYa-JgW6lkH_r2lZuQW-eysDszsB8hj4xGjEr2PJvni-VTvo1YJiCMBU8j6sWouCKTy-6aTGgCEGYihlty59zBW0RC2YSIvG6PDQa5aYa-Nl3Qm6DfY7DZW8RgbequD77QYfF3XFuza7C9JzeVbhw-nOeUbF-Xm8V7uPp8-1jMV6EGwfswKUsJvCiSDBArBKgyLVIpOUCseQFl4aV1tUOgwGlZcZAUZcplirHIYpiS2an3aM33gK5Xbe0KbBrdoRmcYqkUsWSSp976crIW1jhnsVJHW7fa_ihG1YhKqRGVyrdqxKJGLOqMyoflKax9uzqYwXb-rUvy_-AvYhNstg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864561628</pqid></control><display><type>article</type><title>Simple Solution to the Three Point Resection Problem</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Ligas, Marcin</creator><creatorcontrib>Ligas, Marcin</creatorcontrib><description>AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.</description><identifier>ISSN: 0733-9453</identifier><identifier>EISSN: 1943-5428</identifier><identifier>DOI: 10.1061/(ASCE)SU.1943-5428.0000104</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Azimuth ; Derivation ; Formulas (mathematics) ; Intersections ; Mathematical analysis ; Quadratic equations ; Straight lines ; Surveying ; Technical Papers</subject><ispartof>Journal of surveying engineering, 2013-08, Vol.139 (3), p.120-125</ispartof><rights>2013 American Society of Civil Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</citedby><cites>FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)SU.1943-5428.0000104$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)SU.1943-5428.0000104$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids></links><search><creatorcontrib>Ligas, Marcin</creatorcontrib><title>Simple Solution to the Three Point Resection Problem</title><title>Journal of surveying engineering</title><description>AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.</description><subject>Azimuth</subject><subject>Derivation</subject><subject>Formulas (mathematics)</subject><subject>Intersections</subject><subject>Mathematical analysis</subject><subject>Quadratic equations</subject><subject>Straight lines</subject><subject>Surveying</subject><subject>Technical Papers</subject><issn>0733-9453</issn><issn>1943-5428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1qwzAQhEVpoWnadzA9pQe7klaW7d5CSH8g0FAnZ6HYa-JgW6lkH_r2lZuQW-eysDszsB8hj4xGjEr2PJvni-VTvo1YJiCMBU8j6sWouCKTy-6aTGgCEGYihlty59zBW0RC2YSIvG6PDQa5aYa-Nl3Qm6DfY7DZW8RgbequD77QYfF3XFuza7C9JzeVbhw-nOeUbF-Xm8V7uPp8-1jMV6EGwfswKUsJvCiSDBArBKgyLVIpOUCseQFl4aV1tUOgwGlZcZAUZcplirHIYpiS2an3aM33gK5Xbe0KbBrdoRmcYqkUsWSSp976crIW1jhnsVJHW7fa_ihG1YhKqRGVyrdqxKJGLOqMyoflKax9uzqYwXb-rUvy_-AvYhNstg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Ligas, Marcin</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130801</creationdate><title>Simple Solution to the Three Point Resection Problem</title><author>Ligas, Marcin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-7dd632cc793eefe33f9a48662335a2c3dccccaafbe30320df2360e68268e54953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Azimuth</topic><topic>Derivation</topic><topic>Formulas (mathematics)</topic><topic>Intersections</topic><topic>Mathematical analysis</topic><topic>Quadratic equations</topic><topic>Straight lines</topic><topic>Surveying</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ligas, Marcin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of surveying engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ligas, Marcin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Solution to the Three Point Resection Problem</atitle><jtitle>Journal of surveying engineering</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>139</volume><issue>3</issue><spage>120</spage><epage>125</epage><pages>120-125</pages><issn>0733-9453</issn><eissn>1943-5428</eissn><abstract>AbstractThe paper presents a simple method of finding the solution to the planar three point resection problem. The main concept leading to the solution is based on an idea of two intersecting circles (which is not new in the literature). The points of intersection of two circles (of which one solves the problem) are obtained by solving a quadratic equation. As a result of the fact that one root of the quadratic equation is known, Vieta’s formula is applied to find the other. When one of the measured angles is equal to 0 or 180°, the problem reduces to the intersection of a straight line and a circle. This also leads to a quadratic equation which is solved by Vieta’s formula. The derivation of the method is very simple (purely analytic) and free from any intermediate parameters, for example, angles, distances, or azimuths.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)SU.1943-5428.0000104</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9453
ispartof Journal of surveying engineering, 2013-08, Vol.139 (3), p.120-125
issn 0733-9453
1943-5428
language eng
recordid cdi_proquest_miscellaneous_1864561628
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Azimuth
Derivation
Formulas (mathematics)
Intersections
Mathematical analysis
Quadratic equations
Straight lines
Surveying
Technical Papers
title Simple Solution to the Three Point Resection Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Solution%20to%20the%20Three%20Point%20Resection%20Problem&rft.jtitle=Journal%20of%20surveying%20engineering&rft.au=Ligas,%20Marcin&rft.date=2013-08-01&rft.volume=139&rft.issue=3&rft.spage=120&rft.epage=125&rft.pages=120-125&rft.issn=0733-9453&rft.eissn=1943-5428&rft_id=info:doi/10.1061/(ASCE)SU.1943-5428.0000104&rft_dat=%3Cproquest_cross%3E1864561628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864561628&rft_id=info:pmid/&rfr_iscdi=true