Multi-parametric extremum seeking-based iterative feedback gains tuning for nonlinear control

Summary We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2016-12, Vol.26 (18), p.4035-4055
1. Verfasser: Benosman, Mouhacine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model‐free multi‐parametric extremum seeking control to iteratively auto‐tune the feedback gains. We analyze the stability of the whole controller, that is, the robust nonlinear controller combined with the multi‐parametric extremum seeking model‐free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example. Copyright © 2016 John Wiley & Sons, Ltd.
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.3547