Blast-Induced Pore Pressure and Liquefaction of Saturated Sand

AbstractThis paper presents results from field tests using explosive generated spherical stress waves to induce residual excess pore pressure and liquefaction in large saturated sand specimens. Twenty-two single spherically shaped explosive charges ranging from 0.00045 to 7.02 kg were suspended and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geotechnical and geoenvironmental engineering 2013-08, Vol.139 (8), p.1308-1319
Hauptverfasser: Charlie, Wayne A, Bretz, Thomas E, Schure (White), Lynne A, Doehring, Donald O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1319
container_issue 8
container_start_page 1308
container_title Journal of geotechnical and geoenvironmental engineering
container_volume 139
creator Charlie, Wayne A
Bretz, Thomas E
Schure (White), Lynne A
Doehring, Donald O
description AbstractThis paper presents results from field tests using explosive generated spherical stress waves to induce residual excess pore pressure and liquefaction in large saturated sand specimens. Twenty-two single spherically shaped explosive charges ranging from 0.00045 to 7.02 kg were suspended and detonated in water located over saturated sand. Little or no residual pore pressure was induced in loose, dense, and very-dense saturated specimens at peak radial particle velocity less than approximately 0.07 m/s (peak shear strain less than approximately 0.005% at peak stress; late-time shear strain less than approximately 0.015% at peak displacement). Liquefaction was approached when peak radial particle velocities exceeded 0.49,0.52, and 0.71 m/s (peak shear strains exceeded 0.03, 0.03, and 0.04% at peak stress; late-time shear strains exceeded 0.09, 0.09, and 0.12% at peak displacement) in the loose, dense, and very-dense specimens, respectively. Peak radial particle velocity and peak strain required to induce a given pore pressure ratio increased with increasing relative density and effective stress. Empirical relationships developed are for single charge detonations.
doi_str_mv 10.1061/(ASCE)GT.1943-5606.0000846
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864561025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864561025</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-8a8e228485c6a58f594b07b5db8fe4a5062d0594127a461f64ecc3fd9828a7473</originalsourceid><addsrcrecordid>eNqNkEFLwzAUx4MoOKffoQjCPHS-ZEmaehB0zDkYONg8h7c0gY6unUl78NubsrGbYC55vPzy_smPkHsKYwqSPo1e19PZ43wzpjmfpEKCHENcissLMjj3LmMNOaTAOL0mNyHsIsNBsQF5easwtOmiLjpji2TVeJusvA2hiwXWRbIsvzvr0LRlUyeNS9bYdh7byK7j8S25clgFe3fah-TrfbaZfqTLz_li-rpMkYNoU4XKMqa4EkaiUE7kfAvZVhRb5SxHAZIVEJuUZcgldZJbYyauyBVTmPFsMiSj49yDb-J7Qqv3ZTC2qrC2TRc0VZILSYGJf6BCxK_TSY8-H1HjmxC8dfrgyz36H01B93617v3q-Ub3LnXvUp_8xssPpxwMBivnsTZlOE9gmchyBhA5eeQiZvWu6XwdTZ0T_g74BQYPibg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855082135</pqid></control><display><type>article</type><title>Blast-Induced Pore Pressure and Liquefaction of Saturated Sand</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Charlie, Wayne A ; Bretz, Thomas E ; Schure (White), Lynne A ; Doehring, Donald O</creator><creatorcontrib>Charlie, Wayne A ; Bretz, Thomas E ; Schure (White), Lynne A ; Doehring, Donald O</creatorcontrib><description>AbstractThis paper presents results from field tests using explosive generated spherical stress waves to induce residual excess pore pressure and liquefaction in large saturated sand specimens. Twenty-two single spherically shaped explosive charges ranging from 0.00045 to 7.02 kg were suspended and detonated in water located over saturated sand. Little or no residual pore pressure was induced in loose, dense, and very-dense saturated specimens at peak radial particle velocity less than approximately 0.07 m/s (peak shear strain less than approximately 0.005% at peak stress; late-time shear strain less than approximately 0.015% at peak displacement). Liquefaction was approached when peak radial particle velocities exceeded 0.49,0.52, and 0.71 m/s (peak shear strains exceeded 0.03, 0.03, and 0.04% at peak stress; late-time shear strains exceeded 0.09, 0.09, and 0.12% at peak displacement) in the loose, dense, and very-dense specimens, respectively. Peak radial particle velocity and peak strain required to induce a given pore pressure ratio increased with increasing relative density and effective stress. Empirical relationships developed are for single charge detonations.</description><identifier>ISSN: 1090-0241</identifier><identifier>EISSN: 1943-5606</identifier><identifier>DOI: 10.1061/(ASCE)GT.1943-5606.0000846</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Detonation ; Displacement ; Exact sciences and technology ; Geoenvironmental engineering ; Geotechnics ; Liquefaction ; Porosity ; Sand ; Shear strain ; Soil investigations. Testing ; Soil mechanics. Rocks mechanics ; Stresses ; Structural analysis. Stresses ; Technical Papers</subject><ispartof>Journal of geotechnical and geoenvironmental engineering, 2013-08, Vol.139 (8), p.1308-1319</ispartof><rights>2013 American Society of Civil Engineers.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-8a8e228485c6a58f594b07b5db8fe4a5062d0594127a461f64ecc3fd9828a7473</citedby><cites>FETCH-LOGICAL-a405t-8a8e228485c6a58f594b07b5db8fe4a5062d0594127a461f64ecc3fd9828a7473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)GT.1943-5606.0000846$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)GT.1943-5606.0000846$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,76162,76170</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27579200$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Charlie, Wayne A</creatorcontrib><creatorcontrib>Bretz, Thomas E</creatorcontrib><creatorcontrib>Schure (White), Lynne A</creatorcontrib><creatorcontrib>Doehring, Donald O</creatorcontrib><title>Blast-Induced Pore Pressure and Liquefaction of Saturated Sand</title><title>Journal of geotechnical and geoenvironmental engineering</title><description>AbstractThis paper presents results from field tests using explosive generated spherical stress waves to induce residual excess pore pressure and liquefaction in large saturated sand specimens. Twenty-two single spherically shaped explosive charges ranging from 0.00045 to 7.02 kg were suspended and detonated in water located over saturated sand. Little or no residual pore pressure was induced in loose, dense, and very-dense saturated specimens at peak radial particle velocity less than approximately 0.07 m/s (peak shear strain less than approximately 0.005% at peak stress; late-time shear strain less than approximately 0.015% at peak displacement). Liquefaction was approached when peak radial particle velocities exceeded 0.49,0.52, and 0.71 m/s (peak shear strains exceeded 0.03, 0.03, and 0.04% at peak stress; late-time shear strains exceeded 0.09, 0.09, and 0.12% at peak displacement) in the loose, dense, and very-dense specimens, respectively. Peak radial particle velocity and peak strain required to induce a given pore pressure ratio increased with increasing relative density and effective stress. Empirical relationships developed are for single charge detonations.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Detonation</subject><subject>Displacement</subject><subject>Exact sciences and technology</subject><subject>Geoenvironmental engineering</subject><subject>Geotechnics</subject><subject>Liquefaction</subject><subject>Porosity</subject><subject>Sand</subject><subject>Shear strain</subject><subject>Soil investigations. Testing</subject><subject>Soil mechanics. Rocks mechanics</subject><subject>Stresses</subject><subject>Structural analysis. Stresses</subject><subject>Technical Papers</subject><issn>1090-0241</issn><issn>1943-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLwzAUx4MoOKffoQjCPHS-ZEmaehB0zDkYONg8h7c0gY6unUl78NubsrGbYC55vPzy_smPkHsKYwqSPo1e19PZ43wzpjmfpEKCHENcissLMjj3LmMNOaTAOL0mNyHsIsNBsQF5easwtOmiLjpji2TVeJusvA2hiwXWRbIsvzvr0LRlUyeNS9bYdh7byK7j8S25clgFe3fah-TrfbaZfqTLz_li-rpMkYNoU4XKMqa4EkaiUE7kfAvZVhRb5SxHAZIVEJuUZcgldZJbYyauyBVTmPFsMiSj49yDb-J7Qqv3ZTC2qrC2TRc0VZILSYGJf6BCxK_TSY8-H1HjmxC8dfrgyz36H01B93617v3q-Ub3LnXvUp_8xssPpxwMBivnsTZlOE9gmchyBhA5eeQiZvWu6XwdTZ0T_g74BQYPibg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Charlie, Wayne A</creator><creator>Bretz, Thomas E</creator><creator>Schure (White), Lynne A</creator><creator>Doehring, Donald O</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130801</creationdate><title>Blast-Induced Pore Pressure and Liquefaction of Saturated Sand</title><author>Charlie, Wayne A ; Bretz, Thomas E ; Schure (White), Lynne A ; Doehring, Donald O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-8a8e228485c6a58f594b07b5db8fe4a5062d0594127a461f64ecc3fd9828a7473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Detonation</topic><topic>Displacement</topic><topic>Exact sciences and technology</topic><topic>Geoenvironmental engineering</topic><topic>Geotechnics</topic><topic>Liquefaction</topic><topic>Porosity</topic><topic>Sand</topic><topic>Shear strain</topic><topic>Soil investigations. Testing</topic><topic>Soil mechanics. Rocks mechanics</topic><topic>Stresses</topic><topic>Structural analysis. Stresses</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlie, Wayne A</creatorcontrib><creatorcontrib>Bretz, Thomas E</creatorcontrib><creatorcontrib>Schure (White), Lynne A</creatorcontrib><creatorcontrib>Doehring, Donald O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlie, Wayne A</au><au>Bretz, Thomas E</au><au>Schure (White), Lynne A</au><au>Doehring, Donald O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blast-Induced Pore Pressure and Liquefaction of Saturated Sand</atitle><jtitle>Journal of geotechnical and geoenvironmental engineering</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>139</volume><issue>8</issue><spage>1308</spage><epage>1319</epage><pages>1308-1319</pages><issn>1090-0241</issn><eissn>1943-5606</eissn><abstract>AbstractThis paper presents results from field tests using explosive generated spherical stress waves to induce residual excess pore pressure and liquefaction in large saturated sand specimens. Twenty-two single spherically shaped explosive charges ranging from 0.00045 to 7.02 kg were suspended and detonated in water located over saturated sand. Little or no residual pore pressure was induced in loose, dense, and very-dense saturated specimens at peak radial particle velocity less than approximately 0.07 m/s (peak shear strain less than approximately 0.005% at peak stress; late-time shear strain less than approximately 0.015% at peak displacement). Liquefaction was approached when peak radial particle velocities exceeded 0.49,0.52, and 0.71 m/s (peak shear strains exceeded 0.03, 0.03, and 0.04% at peak stress; late-time shear strains exceeded 0.09, 0.09, and 0.12% at peak displacement) in the loose, dense, and very-dense specimens, respectively. Peak radial particle velocity and peak strain required to induce a given pore pressure ratio increased with increasing relative density and effective stress. Empirical relationships developed are for single charge detonations.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)GT.1943-5606.0000846</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1090-0241
ispartof Journal of geotechnical and geoenvironmental engineering, 2013-08, Vol.139 (8), p.1308-1319
issn 1090-0241
1943-5606
language eng
recordid cdi_proquest_miscellaneous_1864561025
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Detonation
Displacement
Exact sciences and technology
Geoenvironmental engineering
Geotechnics
Liquefaction
Porosity
Sand
Shear strain
Soil investigations. Testing
Soil mechanics. Rocks mechanics
Stresses
Structural analysis. Stresses
Technical Papers
title Blast-Induced Pore Pressure and Liquefaction of Saturated Sand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blast-Induced%20Pore%20Pressure%20and%20Liquefaction%20of%20Saturated%20Sand&rft.jtitle=Journal%20of%20geotechnical%20and%20geoenvironmental%20engineering&rft.au=Charlie,%20Wayne%20A&rft.date=2013-08-01&rft.volume=139&rft.issue=8&rft.spage=1308&rft.epage=1319&rft.pages=1308-1319&rft.issn=1090-0241&rft.eissn=1943-5606&rft_id=info:doi/10.1061/(ASCE)GT.1943-5606.0000846&rft_dat=%3Cproquest_cross%3E1864561025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855082135&rft_id=info:pmid/&rfr_iscdi=true