Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs
Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and top...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2016-09, Vol.117 (14), p.146401-146401, Article 146401 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146401 |
---|---|
container_issue | 14 |
container_start_page | 146401 |
container_title | Physical review letters |
container_volume | 117 |
creator | Arnold, F Naumann, M Wu, S-C Sun, Y Schmidt, M Borrmann, H Felser, C Yan, B Hassinger, E |
description | Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface. |
doi_str_mv | 10.1103/physrevlett.117.146401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864560913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864560913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</originalsourceid><addsrcrecordid>eNqNkMFKw0AQhhdRbK2-QsnRS-pOdpPNHkuxWihYbMVj2CQTG026cTcp5O3dkurZ08DP988MHyFToDMAyh6afW8NHitsWxeIGfCIU7ggY6BC-gKAX5IxpQx8SakYkRtrPymlEETxNRkFQnDHhWOyWuxLoyrvHfvK2-jsC1vrqUPuLdHUpbftTKEy9Ha60ZX-6D1deO0eB3yLdVlj69o7Nbe35KpQlcW785yQt-XjbvHsr1-eVov52s94GLc-y3NO40JGnEslI0h5LNIsFjkEKc9lIUMQ2ek5wChjLpeMFgGkUKRSglJsQu6HvY3R3x3aNqlLm2FVqQPqziYQRzyMqAT2D5SFHEQoYodGA5oZbZ3ZImlMWSvTJ0CTk_Fk44y_4nHtjLtAJINxV5yeb3Rpjflf7Vcx-wGm8n3e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835417578</pqid></control><display><type>article</type><title>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</title><source>American Physical Society Journals</source><creator>Arnold, F ; Naumann, M ; Wu, S-C ; Sun, Y ; Schmidt, M ; Borrmann, H ; Felser, C ; Yan, B ; Hassinger, E</creator><creatorcontrib>Arnold, F ; Naumann, M ; Wu, S-C ; Sun, Y ; Schmidt, M ; Borrmann, H ; Felser, C ; Yan, B ; Hassinger, E</creatorcontrib><description>Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.117.146401</identifier><identifier>PMID: 27740795</identifier><language>eng</language><publisher>United States</publisher><subject>Arsenic ; Chirality ; Fermi surfaces ; Magnetization ; Metalloids ; Oscillations ; Pocket ; Topology</subject><ispartof>Physical review letters, 2016-09, Vol.117 (14), p.146401-146401, Article 146401</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</citedby><cites>FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27740795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, F</creatorcontrib><creatorcontrib>Naumann, M</creatorcontrib><creatorcontrib>Wu, S-C</creatorcontrib><creatorcontrib>Sun, Y</creatorcontrib><creatorcontrib>Schmidt, M</creatorcontrib><creatorcontrib>Borrmann, H</creatorcontrib><creatorcontrib>Felser, C</creatorcontrib><creatorcontrib>Yan, B</creatorcontrib><creatorcontrib>Hassinger, E</creatorcontrib><title>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.</description><subject>Arsenic</subject><subject>Chirality</subject><subject>Fermi surfaces</subject><subject>Magnetization</subject><subject>Metalloids</subject><subject>Oscillations</subject><subject>Pocket</subject><subject>Topology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKw0AQhhdRbK2-QsnRS-pOdpPNHkuxWihYbMVj2CQTG026cTcp5O3dkurZ08DP988MHyFToDMAyh6afW8NHitsWxeIGfCIU7ggY6BC-gKAX5IxpQx8SakYkRtrPymlEETxNRkFQnDHhWOyWuxLoyrvHfvK2-jsC1vrqUPuLdHUpbftTKEy9Ha60ZX-6D1deO0eB3yLdVlj69o7Nbe35KpQlcW785yQt-XjbvHsr1-eVov52s94GLc-y3NO40JGnEslI0h5LNIsFjkEKc9lIUMQ2ek5wChjLpeMFgGkUKRSglJsQu6HvY3R3x3aNqlLm2FVqQPqziYQRzyMqAT2D5SFHEQoYodGA5oZbZ3ZImlMWSvTJ0CTk_Fk44y_4nHtjLtAJINxV5yeb3Rpjflf7Vcx-wGm8n3e</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Arnold, F</creator><creator>Naumann, M</creator><creator>Wu, S-C</creator><creator>Sun, Y</creator><creator>Schmidt, M</creator><creator>Borrmann, H</creator><creator>Felser, C</creator><creator>Yan, B</creator><creator>Hassinger, E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160930</creationdate><title>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</title><author>Arnold, F ; Naumann, M ; Wu, S-C ; Sun, Y ; Schmidt, M ; Borrmann, H ; Felser, C ; Yan, B ; Hassinger, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arsenic</topic><topic>Chirality</topic><topic>Fermi surfaces</topic><topic>Magnetization</topic><topic>Metalloids</topic><topic>Oscillations</topic><topic>Pocket</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, F</creatorcontrib><creatorcontrib>Naumann, M</creatorcontrib><creatorcontrib>Wu, S-C</creatorcontrib><creatorcontrib>Sun, Y</creatorcontrib><creatorcontrib>Schmidt, M</creatorcontrib><creatorcontrib>Borrmann, H</creatorcontrib><creatorcontrib>Felser, C</creatorcontrib><creatorcontrib>Yan, B</creatorcontrib><creatorcontrib>Hassinger, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, F</au><au>Naumann, M</au><au>Wu, S-C</au><au>Sun, Y</au><au>Schmidt, M</au><au>Borrmann, H</au><au>Felser, C</au><au>Yan, B</au><au>Hassinger, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-09-30</date><risdate>2016</risdate><volume>117</volume><issue>14</issue><spage>146401</spage><epage>146401</epage><pages>146401-146401</pages><artnum>146401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.</abstract><cop>United States</cop><pmid>27740795</pmid><doi>10.1103/physrevlett.117.146401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2016-09, Vol.117 (14), p.146401-146401, Article 146401 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864560913 |
source | American Physical Society Journals |
subjects | Arsenic Chirality Fermi surfaces Magnetization Metalloids Oscillations Topology |
title | Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Weyl%20Pockets%20and%20Fermi%20Surface%20Topology%20of%20the%20Weyl%20Semimetal%20TaAs&rft.jtitle=Physical%20review%20letters&rft.au=Arnold,%20F&rft.date=2016-09-30&rft.volume=117&rft.issue=14&rft.spage=146401&rft.epage=146401&rft.pages=146401-146401&rft.artnum=146401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.117.146401&rft_dat=%3Cproquest_cross%3E1864560913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835417578&rft_id=info:pmid/27740795&rfr_iscdi=true |