Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs

Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-09, Vol.117 (14), p.146401-146401, Article 146401
Hauptverfasser: Arnold, F, Naumann, M, Wu, S-C, Sun, Y, Schmidt, M, Borrmann, H, Felser, C, Yan, B, Hassinger, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146401
container_issue 14
container_start_page 146401
container_title Physical review letters
container_volume 117
creator Arnold, F
Naumann, M
Wu, S-C
Sun, Y
Schmidt, M
Borrmann, H
Felser, C
Yan, B
Hassinger, E
description Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.
doi_str_mv 10.1103/physrevlett.117.146401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864560913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864560913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</originalsourceid><addsrcrecordid>eNqNkMFKw0AQhhdRbK2-QsnRS-pOdpPNHkuxWihYbMVj2CQTG026cTcp5O3dkurZ08DP988MHyFToDMAyh6afW8NHitsWxeIGfCIU7ggY6BC-gKAX5IxpQx8SakYkRtrPymlEETxNRkFQnDHhWOyWuxLoyrvHfvK2-jsC1vrqUPuLdHUpbftTKEy9Ha60ZX-6D1deO0eB3yLdVlj69o7Nbe35KpQlcW785yQt-XjbvHsr1-eVov52s94GLc-y3NO40JGnEslI0h5LNIsFjkEKc9lIUMQ2ek5wChjLpeMFgGkUKRSglJsQu6HvY3R3x3aNqlLm2FVqQPqziYQRzyMqAT2D5SFHEQoYodGA5oZbZ3ZImlMWSvTJ0CTk_Fk44y_4nHtjLtAJINxV5yeb3Rpjflf7Vcx-wGm8n3e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835417578</pqid></control><display><type>article</type><title>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</title><source>American Physical Society Journals</source><creator>Arnold, F ; Naumann, M ; Wu, S-C ; Sun, Y ; Schmidt, M ; Borrmann, H ; Felser, C ; Yan, B ; Hassinger, E</creator><creatorcontrib>Arnold, F ; Naumann, M ; Wu, S-C ; Sun, Y ; Schmidt, M ; Borrmann, H ; Felser, C ; Yan, B ; Hassinger, E</creatorcontrib><description>Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.117.146401</identifier><identifier>PMID: 27740795</identifier><language>eng</language><publisher>United States</publisher><subject>Arsenic ; Chirality ; Fermi surfaces ; Magnetization ; Metalloids ; Oscillations ; Pocket ; Topology</subject><ispartof>Physical review letters, 2016-09, Vol.117 (14), p.146401-146401, Article 146401</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</citedby><cites>FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27740795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, F</creatorcontrib><creatorcontrib>Naumann, M</creatorcontrib><creatorcontrib>Wu, S-C</creatorcontrib><creatorcontrib>Sun, Y</creatorcontrib><creatorcontrib>Schmidt, M</creatorcontrib><creatorcontrib>Borrmann, H</creatorcontrib><creatorcontrib>Felser, C</creatorcontrib><creatorcontrib>Yan, B</creatorcontrib><creatorcontrib>Hassinger, E</creatorcontrib><title>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.</description><subject>Arsenic</subject><subject>Chirality</subject><subject>Fermi surfaces</subject><subject>Magnetization</subject><subject>Metalloids</subject><subject>Oscillations</subject><subject>Pocket</subject><subject>Topology</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKw0AQhhdRbK2-QsnRS-pOdpPNHkuxWihYbMVj2CQTG026cTcp5O3dkurZ08DP988MHyFToDMAyh6afW8NHitsWxeIGfCIU7ggY6BC-gKAX5IxpQx8SakYkRtrPymlEETxNRkFQnDHhWOyWuxLoyrvHfvK2-jsC1vrqUPuLdHUpbftTKEy9Ha60ZX-6D1deO0eB3yLdVlj69o7Nbe35KpQlcW785yQt-XjbvHsr1-eVov52s94GLc-y3NO40JGnEslI0h5LNIsFjkEKc9lIUMQ2ek5wChjLpeMFgGkUKRSglJsQu6HvY3R3x3aNqlLm2FVqQPqziYQRzyMqAT2D5SFHEQoYodGA5oZbZ3ZImlMWSvTJ0CTk_Fk44y_4nHtjLtAJINxV5yeb3Rpjflf7Vcx-wGm8n3e</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Arnold, F</creator><creator>Naumann, M</creator><creator>Wu, S-C</creator><creator>Sun, Y</creator><creator>Schmidt, M</creator><creator>Borrmann, H</creator><creator>Felser, C</creator><creator>Yan, B</creator><creator>Hassinger, E</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160930</creationdate><title>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</title><author>Arnold, F ; Naumann, M ; Wu, S-C ; Sun, Y ; Schmidt, M ; Borrmann, H ; Felser, C ; Yan, B ; Hassinger, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-3dd408f96449a961b487bc87d12b4d9f9517c40791e6c387d930f21b1fb991aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arsenic</topic><topic>Chirality</topic><topic>Fermi surfaces</topic><topic>Magnetization</topic><topic>Metalloids</topic><topic>Oscillations</topic><topic>Pocket</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, F</creatorcontrib><creatorcontrib>Naumann, M</creatorcontrib><creatorcontrib>Wu, S-C</creatorcontrib><creatorcontrib>Sun, Y</creatorcontrib><creatorcontrib>Schmidt, M</creatorcontrib><creatorcontrib>Borrmann, H</creatorcontrib><creatorcontrib>Felser, C</creatorcontrib><creatorcontrib>Yan, B</creatorcontrib><creatorcontrib>Hassinger, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, F</au><au>Naumann, M</au><au>Wu, S-C</au><au>Sun, Y</au><au>Schmidt, M</au><au>Borrmann, H</au><au>Felser, C</au><au>Yan, B</au><au>Hassinger, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2016-09-30</date><risdate>2016</risdate><volume>117</volume><issue>14</issue><spage>146401</spage><epage>146401</epage><pages>146401-146401</pages><artnum>146401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.</abstract><cop>United States</cop><pmid>27740795</pmid><doi>10.1103/physrevlett.117.146401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2016-09, Vol.117 (14), p.146401-146401, Article 146401
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1864560913
source American Physical Society Journals
subjects Arsenic
Chirality
Fermi surfaces
Magnetization
Metalloids
Oscillations
Pocket
Topology
title Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A27%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20Weyl%20Pockets%20and%20Fermi%20Surface%20Topology%20of%20the%20Weyl%20Semimetal%20TaAs&rft.jtitle=Physical%20review%20letters&rft.au=Arnold,%20F&rft.date=2016-09-30&rft.volume=117&rft.issue=14&rft.spage=146401&rft.epage=146401&rft.pages=146401-146401&rft.artnum=146401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.117.146401&rft_dat=%3Cproquest_cross%3E1864560913%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835417578&rft_id=info:pmid/27740795&rfr_iscdi=true