Poly(2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents

ABSTRACT Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2017-01, Vol.114 (1), p.39-45
Hauptverfasser: Plothe, Ramona, Sittko, Ina, Lanfer, Franziska, Fortmann, Maximilian, Roth, Meike, Kolbach, Vivien, Tiller, Joerg C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 39
container_title Biotechnology and bioengineering
container_volume 114
creator Plothe, Ramona
Sittko, Ina
Lanfer, Franziska
Fortmann, Maximilian
Roth, Meike
Kolbach, Vivien
Tiller, Joerg C.
description ABSTRACT Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2‐ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39–45. © 2016 Wiley Periodicals, Inc. Electronspinning enzymes with poly(2‐ethyloxazoline) (PEtOx) make the entrapped biocatalysts more active in organic solvents. The use of PEtOx‐nanofibers for coating surfaces allows the design of a stable biocatalytically active mechanical stirrer for reactions in unconventional media such as n‐heptane. Optimization of the entrapment and the reaction conditions of electrospun lipase from Candida antarctica affords a 10‐fold higher specific activity and a higher carrier activity compared the commercial Novozyme 435.
doi_str_mv 10.1002/bit.26043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864558181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4265709781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4563-787592217bf0b57c7405c52766b6f72e67ff67366dc0ee2cb21155a4fe9a29a43</originalsourceid><addsrcrecordid>eNqN0c9KHTEUBvAgLfVqu_AFSqAbXYyeZPJnZlnFWkFoF3ZXGDLxjDeSmdwmM-q46iP4jD5JY6-6KBRchcCPL-fkI2SHwT4D4AetG_e5AlFukAWDWhfAa3hDFgCgilLWfJNspXSVr7pS6h3Z5LrUrFJyQX5-D37e5Q-_73Fczj7cmrvg3YB71CTamzG6W9qFSJfuculnauzorpGiRzvGkFbTQHG4m3tM1A00xEszOEtT8Nc4jOk9edsZn_DD07lNfnw5Pj_6Wpx9Ozk9-nxWWCFVWehK5xk5020HrdRWC5BWcq1UqzrNUemuU7pU6sICIrctZ0xKIzqsDa-NKLfJ7jp3FcOvCdPY9C5Z9N4MGKbU5FWFlBWr2CuoBK1FfuAVlCsNdQmPA3z6h16FKQ5556yE0KLmqspqb61s_roUsWtW0fUmzg2D5rHIJhfZ_C0y249PiVPb48WLfG4ug4M1uHEe5_8nNYen5-vIPzTNpp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844749268</pqid></control><display><type>article</type><title>Poly(2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Plothe, Ramona ; Sittko, Ina ; Lanfer, Franziska ; Fortmann, Maximilian ; Roth, Meike ; Kolbach, Vivien ; Tiller, Joerg C.</creator><creatorcontrib>Plothe, Ramona ; Sittko, Ina ; Lanfer, Franziska ; Fortmann, Maximilian ; Roth, Meike ; Kolbach, Vivien ; Tiller, Joerg C.</creatorcontrib><description>ABSTRACT Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2‐ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39–45. © 2016 Wiley Periodicals, Inc. Electronspinning enzymes with poly(2‐ethyloxazoline) (PEtOx) make the entrapped biocatalysts more active in organic solvents. The use of PEtOx‐nanofibers for coating surfaces allows the design of a stable biocatalytically active mechanical stirrer for reactions in unconventional media such as n‐heptane. Optimization of the entrapment and the reaction conditions of electrospun lipase from Candida antarctica affords a 10‐fold higher specific activity and a higher carrier activity compared the commercial Novozyme 435.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26043</identifier><identifier>PMID: 27371865</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Biocatalysis ; Bioengineering ; Bioreactors ; Biotechnology ; Candida antarctica ; Carriers ; Electrochemical Techniques - methods ; Electrospinning ; Enzymes ; Enzymes - chemistry ; Enzymes - metabolism ; Fibers ; Fungal Proteins ; Lipase ; Models, Chemical ; Oxazoles - chemistry ; poly(2‐ethyloxazoline) ; polymer nanofibers ; Polymers - chemistry ; Solvents ; Solvents - chemistry ; Stirrers ; Surface chemistry</subject><ispartof>Biotechnology and bioengineering, 2017-01, Vol.114 (1), p.39-45</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4563-787592217bf0b57c7405c52766b6f72e67ff67366dc0ee2cb21155a4fe9a29a43</citedby><cites>FETCH-LOGICAL-c4563-787592217bf0b57c7405c52766b6f72e67ff67366dc0ee2cb21155a4fe9a29a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27371865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plothe, Ramona</creatorcontrib><creatorcontrib>Sittko, Ina</creatorcontrib><creatorcontrib>Lanfer, Franziska</creatorcontrib><creatorcontrib>Fortmann, Maximilian</creatorcontrib><creatorcontrib>Roth, Meike</creatorcontrib><creatorcontrib>Kolbach, Vivien</creatorcontrib><creatorcontrib>Tiller, Joerg C.</creatorcontrib><title>Poly(2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>ABSTRACT Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2‐ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39–45. © 2016 Wiley Periodicals, Inc. Electronspinning enzymes with poly(2‐ethyloxazoline) (PEtOx) make the entrapped biocatalysts more active in organic solvents. The use of PEtOx‐nanofibers for coating surfaces allows the design of a stable biocatalytically active mechanical stirrer for reactions in unconventional media such as n‐heptane. Optimization of the entrapment and the reaction conditions of electrospun lipase from Candida antarctica affords a 10‐fold higher specific activity and a higher carrier activity compared the commercial Novozyme 435.</description><subject>Biocatalysis</subject><subject>Bioengineering</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Candida antarctica</subject><subject>Carriers</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrospinning</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - metabolism</subject><subject>Fibers</subject><subject>Fungal Proteins</subject><subject>Lipase</subject><subject>Models, Chemical</subject><subject>Oxazoles - chemistry</subject><subject>poly(2‐ethyloxazoline)</subject><subject>polymer nanofibers</subject><subject>Polymers - chemistry</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Stirrers</subject><subject>Surface chemistry</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9KHTEUBvAgLfVqu_AFSqAbXYyeZPJnZlnFWkFoF3ZXGDLxjDeSmdwmM-q46iP4jD5JY6-6KBRchcCPL-fkI2SHwT4D4AetG_e5AlFukAWDWhfAa3hDFgCgilLWfJNspXSVr7pS6h3Z5LrUrFJyQX5-D37e5Q-_73Fczj7cmrvg3YB71CTamzG6W9qFSJfuculnauzorpGiRzvGkFbTQHG4m3tM1A00xEszOEtT8Nc4jOk9edsZn_DD07lNfnw5Pj_6Wpx9Ozk9-nxWWCFVWehK5xk5020HrdRWC5BWcq1UqzrNUemuU7pU6sICIrctZ0xKIzqsDa-NKLfJ7jp3FcOvCdPY9C5Z9N4MGKbU5FWFlBWr2CuoBK1FfuAVlCsNdQmPA3z6h16FKQ5556yE0KLmqspqb61s_roUsWtW0fUmzg2D5rHIJhfZ_C0y249PiVPb48WLfG4ug4M1uHEe5_8nNYen5-vIPzTNpp0</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Plothe, Ramona</creator><creator>Sittko, Ina</creator><creator>Lanfer, Franziska</creator><creator>Fortmann, Maximilian</creator><creator>Roth, Meike</creator><creator>Kolbach, Vivien</creator><creator>Tiller, Joerg C.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Poly(2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents</title><author>Plothe, Ramona ; Sittko, Ina ; Lanfer, Franziska ; Fortmann, Maximilian ; Roth, Meike ; Kolbach, Vivien ; Tiller, Joerg C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4563-787592217bf0b57c7405c52766b6f72e67ff67366dc0ee2cb21155a4fe9a29a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biocatalysis</topic><topic>Bioengineering</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Candida antarctica</topic><topic>Carriers</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrospinning</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - metabolism</topic><topic>Fibers</topic><topic>Fungal Proteins</topic><topic>Lipase</topic><topic>Models, Chemical</topic><topic>Oxazoles - chemistry</topic><topic>poly(2‐ethyloxazoline)</topic><topic>polymer nanofibers</topic><topic>Polymers - chemistry</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Stirrers</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plothe, Ramona</creatorcontrib><creatorcontrib>Sittko, Ina</creatorcontrib><creatorcontrib>Lanfer, Franziska</creatorcontrib><creatorcontrib>Fortmann, Maximilian</creatorcontrib><creatorcontrib>Roth, Meike</creatorcontrib><creatorcontrib>Kolbach, Vivien</creatorcontrib><creatorcontrib>Tiller, Joerg C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plothe, Ramona</au><au>Sittko, Ina</au><au>Lanfer, Franziska</au><au>Fortmann, Maximilian</au><au>Roth, Meike</au><au>Kolbach, Vivien</au><au>Tiller, Joerg C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2017-01</date><risdate>2017</risdate><volume>114</volume><issue>1</issue><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT Nanofibers are advantageous carriers for biocatalysts, because they show lower diffusion limitations due to their high surface/volume ratio. Only a few samples are known where enzymes are directly spun into nanofibers, mostly because there are not many suited polymer carriers. In this study, poly(2‐ethyloxazoline) (PEtOx) was explored regarding its usefulness to activate various enzymes in organic solvents by directly electrospinning them from aqueous solutions containing the polymer. It was found that the concentration of PEtOx in the spinning solution and also the swellability of the fibers play a great role in the activity of the enzymes in organic solvents. Using electrospun lipase B from Candida antarctica (CaLB) under optimized conditions revealed a higher carrier activity than the commercial Novozyme 435 with 10 times less immobilized protein. The electrospinning of PEtOx/CaLB fibers onto a stirrer is used to realize a biocatalytic stirrer for organic solvents. Biotechnol. Bioeng. 2017;114: 39–45. © 2016 Wiley Periodicals, Inc. Electronspinning enzymes with poly(2‐ethyloxazoline) (PEtOx) make the entrapped biocatalysts more active in organic solvents. The use of PEtOx‐nanofibers for coating surfaces allows the design of a stable biocatalytically active mechanical stirrer for reactions in unconventional media such as n‐heptane. Optimization of the entrapment and the reaction conditions of electrospun lipase from Candida antarctica affords a 10‐fold higher specific activity and a higher carrier activity compared the commercial Novozyme 435.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27371865</pmid><doi>10.1002/bit.26043</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2017-01, Vol.114 (1), p.39-45
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1864558181
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biocatalysis
Bioengineering
Bioreactors
Biotechnology
Candida antarctica
Carriers
Electrochemical Techniques - methods
Electrospinning
Enzymes
Enzymes - chemistry
Enzymes - metabolism
Fibers
Fungal Proteins
Lipase
Models, Chemical
Oxazoles - chemistry
poly(2‐ethyloxazoline)
polymer nanofibers
Polymers - chemistry
Solvents
Solvents - chemistry
Stirrers
Surface chemistry
title Poly(2‐ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(2%E2%80%90ethyloxazoline)%20as%20matrix%20for%20highly%20active%20electrospun%20enzymes%20in%20organic%20solvents&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Plothe,%20Ramona&rft.date=2017-01&rft.volume=114&rft.issue=1&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.26043&rft_dat=%3Cproquest_cross%3E4265709781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844749268&rft_id=info:pmid/27371865&rfr_iscdi=true