Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation

Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and rob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Defense science journal 2015-11, Vol.65 (6), p.425-430
Hauptverfasser: Awale, Vaibhav, Hablani, Hari B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 6
container_start_page 425
container_title Defense science journal
container_volume 65
creator Awale, Vaibhav
Hablani, Hari B.
description Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.
doi_str_mv 10.14429/dsj.65.8874
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864556520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864556520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ebb48b4c554aa38c69b5492292373034b3f92ebe945aaa5f67fbbe975ef132d73</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhisEEmNw4wdE4sKBjqT5ao_TYICYQAKGdovS1mWZugSSlMG_p2OcONmWH9mv9CTJKcEjwlhWXNZhNRJ8lOeS7SUDXEiRMsEW-32PCUklyxeHyVEIK4x5IXM8SL6mXTDOItegJ6g7W2sb0djUUKfGgo9Gt-gZbHA-oI2JS3QFFdjodWsC1Ohet2tt0dS0ETxqnEfjLjrr1q4LaG5r8Bu93bzC0lQtoAf9ad507D8eJweNbgOc_NVhMp9ev0xu09njzd1kPEsrSllMoSxZXrKKc6Y1zStRlJwVWVZkVFJMWUmbIoMSCsa11rwRsin7SXJoCM1qSYfJ-e7uu3cfHYSo1iZU0LbaQh9SkVwwzgXPcI-e_UNXrvO2T6eIFIwwkpEtdbGjKu9C8NCod2_W2n8rgtWvBtVrUIKrrQb6A_xJfNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764141210</pqid></control><display><type>article</type><title>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Awale, Vaibhav ; Hablani, Hari B.</creator><creatorcontrib>Awale, Vaibhav ; Hablani, Hari B.</creatorcontrib><description>Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</description><identifier>ISSN: 0011-748X</identifier><identifier>EISSN: 0976-464X</identifier><identifier>DOI: 10.14429/dsj.65.8874</identifier><language>eng</language><publisher>New Delhi: Defence Scientific Information &amp; Documentation Centre</publisher><subject>Estimates ; Failure ; Filters ; Fusion ; Inertial navigation ; Kalman filters ; Navigation ; Navigation systems ; Optimization ; Sensors ; State vectors ; Submarines</subject><ispartof>Defense science journal, 2015-11, Vol.65 (6), p.425-430</ispartof><rights>Copyright Defence Scientific Information &amp; Documentation Centre Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ebb48b4c554aa38c69b5492292373034b3f92ebe945aaa5f67fbbe975ef132d73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Awale, Vaibhav</creatorcontrib><creatorcontrib>Hablani, Hari B.</creatorcontrib><title>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</title><title>Defense science journal</title><description>Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</description><subject>Estimates</subject><subject>Failure</subject><subject>Filters</subject><subject>Fusion</subject><subject>Inertial navigation</subject><subject>Kalman filters</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Optimization</subject><subject>Sensors</subject><subject>State vectors</subject><subject>Submarines</subject><issn>0011-748X</issn><issn>0976-464X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1PwzAMhisEEmNw4wdE4sKBjqT5ao_TYICYQAKGdovS1mWZugSSlMG_p2OcONmWH9mv9CTJKcEjwlhWXNZhNRJ8lOeS7SUDXEiRMsEW-32PCUklyxeHyVEIK4x5IXM8SL6mXTDOItegJ6g7W2sb0djUUKfGgo9Gt-gZbHA-oI2JS3QFFdjodWsC1Ohet2tt0dS0ETxqnEfjLjrr1q4LaG5r8Bu93bzC0lQtoAf9ad507D8eJweNbgOc_NVhMp9ev0xu09njzd1kPEsrSllMoSxZXrKKc6Y1zStRlJwVWVZkVFJMWUmbIoMSCsa11rwRsin7SXJoCM1qSYfJ-e7uu3cfHYSo1iZU0LbaQh9SkVwwzgXPcI-e_UNXrvO2T6eIFIwwkpEtdbGjKu9C8NCod2_W2n8rgtWvBtVrUIKrrQb6A_xJfNU</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Awale, Vaibhav</creator><creator>Hablani, Hari B.</creator><general>Defence Scientific Information &amp; Documentation Centre</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04U</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88F</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M1Q</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</title><author>Awale, Vaibhav ; Hablani, Hari B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ebb48b4c554aa38c69b5492292373034b3f92ebe945aaa5f67fbbe975ef132d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Estimates</topic><topic>Failure</topic><topic>Filters</topic><topic>Fusion</topic><topic>Inertial navigation</topic><topic>Kalman filters</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Optimization</topic><topic>Sensors</topic><topic>State vectors</topic><topic>Submarines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awale, Vaibhav</creatorcontrib><creatorcontrib>Hablani, Hari B.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: History</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Military Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Defense science journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awale, Vaibhav</au><au>Hablani, Hari B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</atitle><jtitle>Defense science journal</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>65</volume><issue>6</issue><spage>425</spage><epage>430</epage><pages>425-430</pages><issn>0011-748X</issn><eissn>0976-464X</eissn><abstract>Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</abstract><cop>New Delhi</cop><pub>Defence Scientific Information &amp; Documentation Centre</pub><doi>10.14429/dsj.65.8874</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-748X
ispartof Defense science journal, 2015-11, Vol.65 (6), p.425-430
issn 0011-748X
0976-464X
language eng
recordid cdi_proquest_miscellaneous_1864556520
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Estimates
Failure
Filters
Fusion
Inertial navigation
Kalman filters
Navigation
Navigation systems
Optimization
Sensors
State vectors
Submarines
title Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Redundant%20Aided-inertial%20Sensors%20with%20Decentralised%20Kalman%20Filter%20for%20Autonomous%20Underwater%20Vehicle%20Navigation&rft.jtitle=Defense%20science%20journal&rft.au=Awale,%20Vaibhav&rft.date=2015-11-01&rft.volume=65&rft.issue=6&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.issn=0011-748X&rft.eissn=0976-464X&rft_id=info:doi/10.14429/dsj.65.8874&rft_dat=%3Cproquest_cross%3E1864556520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764141210&rft_id=info:pmid/&rfr_iscdi=true