Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation
Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and rob...
Gespeichert in:
Veröffentlicht in: | Defense science journal 2015-11, Vol.65 (6), p.425-430 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 430 |
---|---|
container_issue | 6 |
container_start_page | 425 |
container_title | Defense science journal |
container_volume | 65 |
creator | Awale, Vaibhav Hablani, Hari B. |
description | Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered. |
doi_str_mv | 10.14429/dsj.65.8874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864556520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864556520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ebb48b4c554aa38c69b5492292373034b3f92ebe945aaa5f67fbbe975ef132d73</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhisEEmNw4wdE4sKBjqT5ao_TYICYQAKGdovS1mWZugSSlMG_p2OcONmWH9mv9CTJKcEjwlhWXNZhNRJ8lOeS7SUDXEiRMsEW-32PCUklyxeHyVEIK4x5IXM8SL6mXTDOItegJ6g7W2sb0djUUKfGgo9Gt-gZbHA-oI2JS3QFFdjodWsC1Ohet2tt0dS0ETxqnEfjLjrr1q4LaG5r8Bu93bzC0lQtoAf9ad507D8eJweNbgOc_NVhMp9ev0xu09njzd1kPEsrSllMoSxZXrKKc6Y1zStRlJwVWVZkVFJMWUmbIoMSCsa11rwRsin7SXJoCM1qSYfJ-e7uu3cfHYSo1iZU0LbaQh9SkVwwzgXPcI-e_UNXrvO2T6eIFIwwkpEtdbGjKu9C8NCod2_W2n8rgtWvBtVrUIKrrQb6A_xJfNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1764141210</pqid></control><display><type>article</type><title>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Awale, Vaibhav ; Hablani, Hari B.</creator><creatorcontrib>Awale, Vaibhav ; Hablani, Hari B.</creatorcontrib><description>Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</description><identifier>ISSN: 0011-748X</identifier><identifier>EISSN: 0976-464X</identifier><identifier>DOI: 10.14429/dsj.65.8874</identifier><language>eng</language><publisher>New Delhi: Defence Scientific Information & Documentation Centre</publisher><subject>Estimates ; Failure ; Filters ; Fusion ; Inertial navigation ; Kalman filters ; Navigation ; Navigation systems ; Optimization ; Sensors ; State vectors ; Submarines</subject><ispartof>Defense science journal, 2015-11, Vol.65 (6), p.425-430</ispartof><rights>Copyright Defence Scientific Information & Documentation Centre Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ebb48b4c554aa38c69b5492292373034b3f92ebe945aaa5f67fbbe975ef132d73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Awale, Vaibhav</creatorcontrib><creatorcontrib>Hablani, Hari B.</creatorcontrib><title>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</title><title>Defense science journal</title><description>Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</description><subject>Estimates</subject><subject>Failure</subject><subject>Filters</subject><subject>Fusion</subject><subject>Inertial navigation</subject><subject>Kalman filters</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Optimization</subject><subject>Sensors</subject><subject>State vectors</subject><subject>Submarines</subject><issn>0011-748X</issn><issn>0976-464X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1PwzAMhisEEmNw4wdE4sKBjqT5ao_TYICYQAKGdovS1mWZugSSlMG_p2OcONmWH9mv9CTJKcEjwlhWXNZhNRJ8lOeS7SUDXEiRMsEW-32PCUklyxeHyVEIK4x5IXM8SL6mXTDOItegJ6g7W2sb0djUUKfGgo9Gt-gZbHA-oI2JS3QFFdjodWsC1Ohet2tt0dS0ETxqnEfjLjrr1q4LaG5r8Bu93bzC0lQtoAf9ad507D8eJweNbgOc_NVhMp9ev0xu09njzd1kPEsrSllMoSxZXrKKc6Y1zStRlJwVWVZkVFJMWUmbIoMSCsa11rwRsin7SXJoCM1qSYfJ-e7uu3cfHYSo1iZU0LbaQh9SkVwwzgXPcI-e_UNXrvO2T6eIFIwwkpEtdbGjKu9C8NCod2_W2n8rgtWvBtVrUIKrrQb6A_xJfNU</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Awale, Vaibhav</creator><creator>Hablani, Hari B.</creator><general>Defence Scientific Information & Documentation Centre</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04U</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88F</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M1Q</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</title><author>Awale, Vaibhav ; Hablani, Hari B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ebb48b4c554aa38c69b5492292373034b3f92ebe945aaa5f67fbbe975ef132d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Estimates</topic><topic>Failure</topic><topic>Filters</topic><topic>Fusion</topic><topic>Inertial navigation</topic><topic>Kalman filters</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Optimization</topic><topic>Sensors</topic><topic>State vectors</topic><topic>Submarines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awale, Vaibhav</creatorcontrib><creatorcontrib>Hablani, Hari B.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: History</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Military Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Defense science journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awale, Vaibhav</au><au>Hablani, Hari B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation</atitle><jtitle>Defense science journal</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>65</volume><issue>6</issue><spage>425</spage><epage>430</epage><pages>425-430</pages><issn>0011-748X</issn><eissn>0976-464X</eissn><abstract>Most submarines carry more than one set of inertial navigation system (INS) for redundancy and reliability. Apart from INS systems, the submarine carries other sensors that provide different navigation information. A major challenge is to combine these sensors and INS estimates in an optimal and robust manner for navigation. This issue has been addressed by Farrell1. The same approach is used in this paper to combine different sensor measurements along with INS system. However, since more than one INS system is available onboard, it would be better to use multiple INS systems at the same time to obtain a better estimate of states and to provide autonomy in the event of failure of one INS system. This would require us to combine the estimates obtained from local filters (one set of INS system integrated with external sensors), in some optimal way to provide a global estimate. Individual sensor and IMU measurements cannot be accessed in this scenario. Also, autonomous operation requires no sharing of information among local filters. Hence a decentralised Kalman filter approach is considered for combining the estimates of local filters to give a global estimate. This estimate would not be optimal, however. A better optimal estimate can be obtained by accessing individual measurements and augmenting the state vector in Kalman filter, but in that case, corruption of one INS system will lead to failure of the whole filter. Hence to ensure satisfactory performance of the filter even in the event of failure of some INS system, a decentralised Kalman filtering approach is considered.</abstract><cop>New Delhi</cop><pub>Defence Scientific Information & Documentation Centre</pub><doi>10.14429/dsj.65.8874</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-748X |
ispartof | Defense science journal, 2015-11, Vol.65 (6), p.425-430 |
issn | 0011-748X 0976-464X |
language | eng |
recordid | cdi_proquest_miscellaneous_1864556520 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Estimates Failure Filters Fusion Inertial navigation Kalman filters Navigation Navigation systems Optimization Sensors State vectors Submarines |
title | Fusion of Redundant Aided-inertial Sensors with Decentralised Kalman Filter for Autonomous Underwater Vehicle Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Redundant%20Aided-inertial%20Sensors%20with%20Decentralised%20Kalman%20Filter%20for%20Autonomous%20Underwater%20Vehicle%20Navigation&rft.jtitle=Defense%20science%20journal&rft.au=Awale,%20Vaibhav&rft.date=2015-11-01&rft.volume=65&rft.issue=6&rft.spage=425&rft.epage=430&rft.pages=425-430&rft.issn=0011-748X&rft.eissn=0976-464X&rft_id=info:doi/10.14429/dsj.65.8874&rft_dat=%3Cproquest_cross%3E1864556520%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1764141210&rft_id=info:pmid/&rfr_iscdi=true |