On the influence of alloy composition on the oxidation performance and oxygen-induced phase transformations in Ti–(0–8) wt%Al alloys

Adopting a high-throughput combinatorial approach, a compositionally graded Ti–xAl (0 ≤ x ≤ 8 wt%) specimen was prepared to conduct a rapid systematic investigation of the influence of composition and exposure time on the oxidation performance of the titanium-rich section of the binary Ti–Al system....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2016-04, Vol.51 (8), p.3684-3692
Hauptverfasser: Samimi, P, Brice, D. A, Banerjee, R, Kaufman, M. J, Collins, P. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3692
container_issue 8
container_start_page 3684
container_title Journal of materials science
container_volume 51
creator Samimi, P
Brice, D. A
Banerjee, R
Kaufman, M. J
Collins, P. C
description Adopting a high-throughput combinatorial approach, a compositionally graded Ti–xAl (0 ≤ x ≤ 8 wt%) specimen was prepared to conduct a rapid systematic investigation of the influence of composition and exposure time on the oxidation performance of the titanium-rich section of the binary Ti–Al system. The compositionally graded specimen was solution heat treated and subjected to oxidation tests at 650 °C for different exposure times. The morphology, structure, and composition of the oxide scale as well as the microstructural changes in the base material were studied across the entire composition range, using a suite of characterization techniques. The observations revealed the presence of Al₂O₃ in the topmost layer of the oxide scale in addition to TiO₂, indicating its early formation during oxidation. An increase in Al concentration improves the scaling rate of Ti; however, this is observed only for extended exposure times (i.e., 50 and 100 h), and a parabolic oxidation law is obeyed in the composition-time domain. The formation of the α₂ phase (Ti₃Al) also takes place for relatively higher Al contents (i.e., 8 wt%).
doi_str_mv 10.1007/s10853-015-9681-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864555879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442894239</galeid><sourcerecordid>A442894239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-67cacb5ad5a504dce6f06f59ee74c0904a9d639082367618f98d7e03647b2f543</originalsourceid><addsrcrecordid>eNp9ks9qHSEUh4fSQm_TPkBXHSiFZDHp0VFHl5fQP4FAoEnWYpzjjWGu3uoMvXfXZfd9wz5JnUyhpItuFPT7PEd_VtVrAqcEoHufCUjeNkB4o4Qkzf5JtSK8axsmoX1arQAobSgT5Hn1Iud7AOAdJavqx2WoxzusfXDDhMFiHV1thiEeahu3u5j96GOo40LFve_Nw8IOk4tpa2bDhL7sHDYYGh_6yWJf7-5MxnpMJuQHbHZyKVJf-1_ffx5DGeRJ_W18tx6Wavll9cyZIeOrP_NRdfPxw_XZ5-bi8tP52fqisZyrsRGdNfaWm54bDqy3KBwIxxVixywoYEb1olUgaSs6QaRTsu8QWsG6W-o4a4-q4-XcXYpfJ8yj3vpscRhMwDhlTaRgnHPZqYK-_Qe9j1MKpTtNKVecMsln6nShNmZAXd4xlmuXJk2PW29jQOfL-poxKhWj7SycPBIKM-J-3JgpZ31-9eUxSxbWpphzQqd3yW9NOmgCeg5eL8HrEryeg9f74tDFyYUNG0x_2_6f9GaRnInabJLP-uaKAhHzT2FCQfsbOAG7aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259524859</pqid></control><display><type>article</type><title>On the influence of alloy composition on the oxidation performance and oxygen-induced phase transformations in Ti–(0–8) wt%Al alloys</title><source>SpringerLink (Online service)</source><creator>Samimi, P ; Brice, D. A ; Banerjee, R ; Kaufman, M. J ; Collins, P. C</creator><creatorcontrib>Samimi, P ; Brice, D. A ; Banerjee, R ; Kaufman, M. J ; Collins, P. C</creatorcontrib><description>Adopting a high-throughput combinatorial approach, a compositionally graded Ti–xAl (0 ≤ x ≤ 8 wt%) specimen was prepared to conduct a rapid systematic investigation of the influence of composition and exposure time on the oxidation performance of the titanium-rich section of the binary Ti–Al system. The compositionally graded specimen was solution heat treated and subjected to oxidation tests at 650 °C for different exposure times. The morphology, structure, and composition of the oxide scale as well as the microstructural changes in the base material were studied across the entire composition range, using a suite of characterization techniques. The observations revealed the presence of Al₂O₃ in the topmost layer of the oxide scale in addition to TiO₂, indicating its early formation during oxidation. An increase in Al concentration improves the scaling rate of Ti; however, this is observed only for extended exposure times (i.e., 50 and 100 h), and a parabolic oxidation law is obeyed in the composition-time domain. The formation of the α₂ phase (Ti₃Al) also takes place for relatively higher Al contents (i.e., 8 wt%).</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-015-9681-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Aluminum ; Aluminum base alloys ; Aluminum oxide ; Binary systems ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Combinatorial analysis ; Composition ; Crystallography and Scattering Methods ; Exposure ; exposure duration ; Heat treatment ; Intermetallics ; Materials Science ; Morphology ; Original Paper ; Oxidation ; Oxidation tests ; Oxidation-reduction reaction ; Oxides ; phase transition ; Phase transitions ; Polymer Sciences ; Scale (corrosion) ; Solid Mechanics ; Titanium ; Titanium aluminides ; Titanium base alloys ; Titanium dioxide</subject><ispartof>Journal of materials science, 2016-04, Vol.51 (8), p.3684-3692</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-67cacb5ad5a504dce6f06f59ee74c0904a9d639082367618f98d7e03647b2f543</citedby><cites>FETCH-LOGICAL-c559t-67cacb5ad5a504dce6f06f59ee74c0904a9d639082367618f98d7e03647b2f543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-015-9681-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-015-9681-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Samimi, P</creatorcontrib><creatorcontrib>Brice, D. A</creatorcontrib><creatorcontrib>Banerjee, R</creatorcontrib><creatorcontrib>Kaufman, M. J</creatorcontrib><creatorcontrib>Collins, P. C</creatorcontrib><title>On the influence of alloy composition on the oxidation performance and oxygen-induced phase transformations in Ti–(0–8) wt%Al alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Adopting a high-throughput combinatorial approach, a compositionally graded Ti–xAl (0 ≤ x ≤ 8 wt%) specimen was prepared to conduct a rapid systematic investigation of the influence of composition and exposure time on the oxidation performance of the titanium-rich section of the binary Ti–Al system. The compositionally graded specimen was solution heat treated and subjected to oxidation tests at 650 °C for different exposure times. The morphology, structure, and composition of the oxide scale as well as the microstructural changes in the base material were studied across the entire composition range, using a suite of characterization techniques. The observations revealed the presence of Al₂O₃ in the topmost layer of the oxide scale in addition to TiO₂, indicating its early formation during oxidation. An increase in Al concentration improves the scaling rate of Ti; however, this is observed only for extended exposure times (i.e., 50 and 100 h), and a parabolic oxidation law is obeyed in the composition-time domain. The formation of the α₂ phase (Ti₃Al) also takes place for relatively higher Al contents (i.e., 8 wt%).</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Binary systems</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Combinatorial analysis</subject><subject>Composition</subject><subject>Crystallography and Scattering Methods</subject><subject>Exposure</subject><subject>exposure duration</subject><subject>Heat treatment</subject><subject>Intermetallics</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Oxidation tests</subject><subject>Oxidation-reduction reaction</subject><subject>Oxides</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Polymer Sciences</subject><subject>Scale (corrosion)</subject><subject>Solid Mechanics</subject><subject>Titanium</subject><subject>Titanium aluminides</subject><subject>Titanium base alloys</subject><subject>Titanium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9ks9qHSEUh4fSQm_TPkBXHSiFZDHp0VFHl5fQP4FAoEnWYpzjjWGu3uoMvXfXZfd9wz5JnUyhpItuFPT7PEd_VtVrAqcEoHufCUjeNkB4o4Qkzf5JtSK8axsmoX1arQAobSgT5Hn1Iud7AOAdJavqx2WoxzusfXDDhMFiHV1thiEeahu3u5j96GOo40LFve_Nw8IOk4tpa2bDhL7sHDYYGh_6yWJf7-5MxnpMJuQHbHZyKVJf-1_ffx5DGeRJ_W18tx6Wavll9cyZIeOrP_NRdfPxw_XZ5-bi8tP52fqisZyrsRGdNfaWm54bDqy3KBwIxxVixywoYEb1olUgaSs6QaRTsu8QWsG6W-o4a4-q4-XcXYpfJ8yj3vpscRhMwDhlTaRgnHPZqYK-_Qe9j1MKpTtNKVecMsln6nShNmZAXd4xlmuXJk2PW29jQOfL-poxKhWj7SycPBIKM-J-3JgpZ31-9eUxSxbWpphzQqd3yW9NOmgCeg5eL8HrEryeg9f74tDFyYUNG0x_2_6f9GaRnInabJLP-uaKAhHzT2FCQfsbOAG7aA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Samimi, P</creator><creator>Brice, D. A</creator><creator>Banerjee, R</creator><creator>Kaufman, M. J</creator><creator>Collins, P. C</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160401</creationdate><title>On the influence of alloy composition on the oxidation performance and oxygen-induced phase transformations in Ti–(0–8) wt%Al alloys</title><author>Samimi, P ; Brice, D. A ; Banerjee, R ; Kaufman, M. J ; Collins, P. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-67cacb5ad5a504dce6f06f59ee74c0904a9d639082367618f98d7e03647b2f543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Binary systems</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Combinatorial analysis</topic><topic>Composition</topic><topic>Crystallography and Scattering Methods</topic><topic>Exposure</topic><topic>exposure duration</topic><topic>Heat treatment</topic><topic>Intermetallics</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Oxidation tests</topic><topic>Oxidation-reduction reaction</topic><topic>Oxides</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Polymer Sciences</topic><topic>Scale (corrosion)</topic><topic>Solid Mechanics</topic><topic>Titanium</topic><topic>Titanium aluminides</topic><topic>Titanium base alloys</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samimi, P</creatorcontrib><creatorcontrib>Brice, D. A</creatorcontrib><creatorcontrib>Banerjee, R</creatorcontrib><creatorcontrib>Kaufman, M. J</creatorcontrib><creatorcontrib>Collins, P. C</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samimi, P</au><au>Brice, D. A</au><au>Banerjee, R</au><au>Kaufman, M. J</au><au>Collins, P. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the influence of alloy composition on the oxidation performance and oxygen-induced phase transformations in Ti–(0–8) wt%Al alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>51</volume><issue>8</issue><spage>3684</spage><epage>3692</epage><pages>3684-3692</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Adopting a high-throughput combinatorial approach, a compositionally graded Ti–xAl (0 ≤ x ≤ 8 wt%) specimen was prepared to conduct a rapid systematic investigation of the influence of composition and exposure time on the oxidation performance of the titanium-rich section of the binary Ti–Al system. The compositionally graded specimen was solution heat treated and subjected to oxidation tests at 650 °C for different exposure times. The morphology, structure, and composition of the oxide scale as well as the microstructural changes in the base material were studied across the entire composition range, using a suite of characterization techniques. The observations revealed the presence of Al₂O₃ in the topmost layer of the oxide scale in addition to TiO₂, indicating its early formation during oxidation. An increase in Al concentration improves the scaling rate of Ti; however, this is observed only for extended exposure times (i.e., 50 and 100 h), and a parabolic oxidation law is obeyed in the composition-time domain. The formation of the α₂ phase (Ti₃Al) also takes place for relatively higher Al contents (i.e., 8 wt%).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-015-9681-x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-04, Vol.51 (8), p.3684-3692
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1864555879
source SpringerLink (Online service)
subjects Alloys
Aluminum
Aluminum base alloys
Aluminum oxide
Binary systems
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Combinatorial analysis
Composition
Crystallography and Scattering Methods
Exposure
exposure duration
Heat treatment
Intermetallics
Materials Science
Morphology
Original Paper
Oxidation
Oxidation tests
Oxidation-reduction reaction
Oxides
phase transition
Phase transitions
Polymer Sciences
Scale (corrosion)
Solid Mechanics
Titanium
Titanium aluminides
Titanium base alloys
Titanium dioxide
title On the influence of alloy composition on the oxidation performance and oxygen-induced phase transformations in Ti–(0–8) wt%Al alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20influence%20of%20alloy%20composition%20on%20the%20oxidation%20performance%20and%20oxygen-induced%20phase%20transformations%20in%20Ti%E2%80%93(0%E2%80%938)%20wt%25Al%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Samimi,%20P&rft.date=2016-04-01&rft.volume=51&rft.issue=8&rft.spage=3684&rft.epage=3692&rft.pages=3684-3692&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-015-9681-x&rft_dat=%3Cgale_proqu%3EA442894239%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259524859&rft_id=info:pmid/&rft_galeid=A442894239&rfr_iscdi=true