Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus
Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2016-06, Vol.51 (11), p.5343-5355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5355 |
---|---|
container_issue | 11 |
container_start_page | 5343 |
container_title | Journal of materials science |
container_volume | 51 |
creator | Ramirez-Rico, J. Lee, S.-Y. Ling, J. J. Noyan, I. C. |
description | Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented. |
doi_str_mv | 10.1007/s10853-016-9837-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864555699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A446663277</galeid><sourcerecordid>A446663277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</originalsourceid><addsrcrecordid>eNp9kl1rFTEQhhdR8Fj9AV4Z8EYvtuY7u96V4kehIHgseBem2clpyu5mTbLQ_hV_rTmsIvVCQggMzzMZmLdpXjJ6yig17zKjnRItZbrtO2Fa8ajZMWVEKzsqHjc7SjlvudTsafMs51tKqTKc7Zqf-5IwZzIh5DXhhHMhaw7zgUBCIAMWdCWm_J4AKTcYE5bgYCQwDwTvFkzhqNSCi9MCKeQ4k-jJELzHdGw2YbmJQyZhJrWSQtVJLojjn2_IElOB6xHJ9zbBPYGl9oGy5ufNEw9jxhe_35Pm6uOHb-ef28svny7Ozy5bpzpeWucEglHMAPdeGul7wyWyzgyDpk53TPWor3vfS4pomJdCG-87oZmkSgy9OGnebH2XFH-smIudQnY4jjBjXLNlnZZKKd0f0df_oLdxTXOdznKues2N7nmlTjfqACPaMPtYErh6BpyCizP6UOtnUmqtBTemCm8fCJUpeFcOsOZsL_ZfH7JsY12KOSf0dqk7gHRvGbXHKNgtCrZGwR6jYEV1-Obkys4HTH_H_p_0apM8RAuHulp7tecVoPV2ijPxC5TwwOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259627692</pqid></control><display><type>article</type><title>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ramirez-Rico, J. ; Lee, S.-Y. ; Ling, J. J. ; Noyan, I. C.</creator><creatorcontrib>Ramirez-Rico, J. ; Lee, S.-Y. ; Ling, J. J. ; Noyan, I. C.</creatorcontrib><description>Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-9837-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon steel ; Carbon steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Crystallography and Scattering Methods ; Design analysis ; Detectors ; Ferritic stainless steels ; Grain size ; In situ measurement ; Materials Science ; Methods ; Original Paper ; Plastic flow ; Polymer Sciences ; Portability ; Portable equipment ; Scattering ; Sensors ; Size effects ; Solid Mechanics ; Stress measurement ; Stresses ; Surface layer ; Texture</subject><ispartof>Journal of materials science, 2016-06, Vol.51 (11), p.5343-5355</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</citedby><cites>FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-9837-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-9837-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramirez-Rico, J.</creatorcontrib><creatorcontrib>Lee, S.-Y.</creatorcontrib><creatorcontrib>Ling, J. J.</creatorcontrib><creatorcontrib>Noyan, I. C.</creatorcontrib><title>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.</description><subject>Carbon steel</subject><subject>Carbon steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Crystallography and Scattering Methods</subject><subject>Design analysis</subject><subject>Detectors</subject><subject>Ferritic stainless steels</subject><subject>Grain size</subject><subject>In situ measurement</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Plastic flow</subject><subject>Polymer Sciences</subject><subject>Portability</subject><subject>Portable equipment</subject><subject>Scattering</subject><subject>Sensors</subject><subject>Size effects</subject><subject>Solid Mechanics</subject><subject>Stress measurement</subject><subject>Stresses</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kl1rFTEQhhdR8Fj9AV4Z8EYvtuY7u96V4kehIHgseBem2clpyu5mTbLQ_hV_rTmsIvVCQggMzzMZmLdpXjJ6yig17zKjnRItZbrtO2Fa8ajZMWVEKzsqHjc7SjlvudTsafMs51tKqTKc7Zqf-5IwZzIh5DXhhHMhaw7zgUBCIAMWdCWm_J4AKTcYE5bgYCQwDwTvFkzhqNSCi9MCKeQ4k-jJELzHdGw2YbmJQyZhJrWSQtVJLojjn2_IElOB6xHJ9zbBPYGl9oGy5ufNEw9jxhe_35Pm6uOHb-ef28svny7Ozy5bpzpeWucEglHMAPdeGul7wyWyzgyDpk53TPWor3vfS4pomJdCG-87oZmkSgy9OGnebH2XFH-smIudQnY4jjBjXLNlnZZKKd0f0df_oLdxTXOdznKues2N7nmlTjfqACPaMPtYErh6BpyCizP6UOtnUmqtBTemCm8fCJUpeFcOsOZsL_ZfH7JsY12KOSf0dqk7gHRvGbXHKNgtCrZGwR6jYEV1-Obkys4HTH_H_p_0apM8RAuHulp7tecVoPV2ijPxC5TwwOY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Ramirez-Rico, J.</creator><creator>Lee, S.-Y.</creator><creator>Ling, J. J.</creator><creator>Noyan, I. C.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160601</creationdate><title>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</title><author>Ramirez-Rico, J. ; Lee, S.-Y. ; Ling, J. J. ; Noyan, I. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon steel</topic><topic>Carbon steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Crystallography and Scattering Methods</topic><topic>Design analysis</topic><topic>Detectors</topic><topic>Ferritic stainless steels</topic><topic>Grain size</topic><topic>In situ measurement</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Plastic flow</topic><topic>Polymer Sciences</topic><topic>Portability</topic><topic>Portable equipment</topic><topic>Scattering</topic><topic>Sensors</topic><topic>Size effects</topic><topic>Solid Mechanics</topic><topic>Stress measurement</topic><topic>Stresses</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Rico, J.</creatorcontrib><creatorcontrib>Lee, S.-Y.</creatorcontrib><creatorcontrib>Ling, J. J.</creatorcontrib><creatorcontrib>Noyan, I. C.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez-Rico, J.</au><au>Lee, S.-Y.</au><au>Ling, J. J.</au><au>Noyan, I. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>5343</spage><epage>5355</epage><pages>5343-5355</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-9837-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2016-06, Vol.51 (11), p.5343-5355 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864555699 |
source | SpringerLink Journals - AutoHoldings |
subjects | Carbon steel Carbon steels Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Comparative analysis Crystallography and Scattering Methods Design analysis Detectors Ferritic stainless steels Grain size In situ measurement Materials Science Methods Original Paper Plastic flow Polymer Sciences Portability Portable equipment Scattering Sensors Size effects Solid Mechanics Stress measurement Stresses Surface layer Texture |
title | Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20measurement%20using%20area%20detectors:%20a%20theoretical%20and%20experimental%20comparison%20of%20different%20methods%20in%20ferritic%20steel%20using%20a%20portable%20X-ray%20apparatus&rft.jtitle=Journal%20of%20materials%20science&rft.au=Ramirez-Rico,%20J.&rft.date=2016-06-01&rft.volume=51&rft.issue=11&rft.spage=5343&rft.epage=5355&rft.pages=5343-5355&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-9837-3&rft_dat=%3Cgale_proqu%3EA446663277%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259627692&rft_id=info:pmid/&rft_galeid=A446663277&rfr_iscdi=true |