Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus

Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2016-06, Vol.51 (11), p.5343-5355
Hauptverfasser: Ramirez-Rico, J., Lee, S.-Y., Ling, J. J., Noyan, I. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5355
container_issue 11
container_start_page 5343
container_title Journal of materials science
container_volume 51
creator Ramirez-Rico, J.
Lee, S.-Y.
Ling, J. J.
Noyan, I. C.
description Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.
doi_str_mv 10.1007/s10853-016-9837-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864555699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A446663277</galeid><sourcerecordid>A446663277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</originalsourceid><addsrcrecordid>eNp9kl1rFTEQhhdR8Fj9AV4Z8EYvtuY7u96V4kehIHgseBem2clpyu5mTbLQ_hV_rTmsIvVCQggMzzMZmLdpXjJ6yig17zKjnRItZbrtO2Fa8ajZMWVEKzsqHjc7SjlvudTsafMs51tKqTKc7Zqf-5IwZzIh5DXhhHMhaw7zgUBCIAMWdCWm_J4AKTcYE5bgYCQwDwTvFkzhqNSCi9MCKeQ4k-jJELzHdGw2YbmJQyZhJrWSQtVJLojjn2_IElOB6xHJ9zbBPYGl9oGy5ufNEw9jxhe_35Pm6uOHb-ef28svny7Ozy5bpzpeWucEglHMAPdeGul7wyWyzgyDpk53TPWor3vfS4pomJdCG-87oZmkSgy9OGnebH2XFH-smIudQnY4jjBjXLNlnZZKKd0f0df_oLdxTXOdznKues2N7nmlTjfqACPaMPtYErh6BpyCizP6UOtnUmqtBTemCm8fCJUpeFcOsOZsL_ZfH7JsY12KOSf0dqk7gHRvGbXHKNgtCrZGwR6jYEV1-Obkys4HTH_H_p_0apM8RAuHulp7tecVoPV2ijPxC5TwwOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259627692</pqid></control><display><type>article</type><title>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ramirez-Rico, J. ; Lee, S.-Y. ; Ling, J. J. ; Noyan, I. C.</creator><creatorcontrib>Ramirez-Rico, J. ; Lee, S.-Y. ; Ling, J. J. ; Noyan, I. C.</creatorcontrib><description>Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-9837-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon steel ; Carbon steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Crystallography and Scattering Methods ; Design analysis ; Detectors ; Ferritic stainless steels ; Grain size ; In situ measurement ; Materials Science ; Methods ; Original Paper ; Plastic flow ; Polymer Sciences ; Portability ; Portable equipment ; Scattering ; Sensors ; Size effects ; Solid Mechanics ; Stress measurement ; Stresses ; Surface layer ; Texture</subject><ispartof>Journal of materials science, 2016-06, Vol.51 (11), p.5343-5355</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</citedby><cites>FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-9837-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-9837-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ramirez-Rico, J.</creatorcontrib><creatorcontrib>Lee, S.-Y.</creatorcontrib><creatorcontrib>Ling, J. J.</creatorcontrib><creatorcontrib>Noyan, I. C.</creatorcontrib><title>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.</description><subject>Carbon steel</subject><subject>Carbon steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Crystallography and Scattering Methods</subject><subject>Design analysis</subject><subject>Detectors</subject><subject>Ferritic stainless steels</subject><subject>Grain size</subject><subject>In situ measurement</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Plastic flow</subject><subject>Polymer Sciences</subject><subject>Portability</subject><subject>Portable equipment</subject><subject>Scattering</subject><subject>Sensors</subject><subject>Size effects</subject><subject>Solid Mechanics</subject><subject>Stress measurement</subject><subject>Stresses</subject><subject>Surface layer</subject><subject>Texture</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kl1rFTEQhhdR8Fj9AV4Z8EYvtuY7u96V4kehIHgseBem2clpyu5mTbLQ_hV_rTmsIvVCQggMzzMZmLdpXjJ6yig17zKjnRItZbrtO2Fa8ajZMWVEKzsqHjc7SjlvudTsafMs51tKqTKc7Zqf-5IwZzIh5DXhhHMhaw7zgUBCIAMWdCWm_J4AKTcYE5bgYCQwDwTvFkzhqNSCi9MCKeQ4k-jJELzHdGw2YbmJQyZhJrWSQtVJLojjn2_IElOB6xHJ9zbBPYGl9oGy5ufNEw9jxhe_35Pm6uOHb-ef28svny7Ozy5bpzpeWucEglHMAPdeGul7wyWyzgyDpk53TPWor3vfS4pomJdCG-87oZmkSgy9OGnebH2XFH-smIudQnY4jjBjXLNlnZZKKd0f0df_oLdxTXOdznKues2N7nmlTjfqACPaMPtYErh6BpyCizP6UOtnUmqtBTemCm8fCJUpeFcOsOZsL_ZfH7JsY12KOSf0dqk7gHRvGbXHKNgtCrZGwR6jYEV1-Obkys4HTH_H_p_0apM8RAuHulp7tecVoPV2ijPxC5TwwOY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Ramirez-Rico, J.</creator><creator>Lee, S.-Y.</creator><creator>Ling, J. J.</creator><creator>Noyan, I. C.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160601</creationdate><title>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</title><author>Ramirez-Rico, J. ; Lee, S.-Y. ; Ling, J. J. ; Noyan, I. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-cc3ea7517a2ff474f9724e187dd60c68159e6b9f940ee71f4367ff83614053d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon steel</topic><topic>Carbon steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Crystallography and Scattering Methods</topic><topic>Design analysis</topic><topic>Detectors</topic><topic>Ferritic stainless steels</topic><topic>Grain size</topic><topic>In situ measurement</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Plastic flow</topic><topic>Polymer Sciences</topic><topic>Portability</topic><topic>Portable equipment</topic><topic>Scattering</topic><topic>Sensors</topic><topic>Size effects</topic><topic>Solid Mechanics</topic><topic>Stress measurement</topic><topic>Stresses</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Rico, J.</creatorcontrib><creatorcontrib>Lee, S.-Y.</creatorcontrib><creatorcontrib>Ling, J. J.</creatorcontrib><creatorcontrib>Noyan, I. C.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez-Rico, J.</au><au>Lee, S.-Y.</au><au>Ling, J. J.</au><au>Noyan, I. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>5343</spage><epage>5355</epage><pages>5343-5355</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Using area detectors for stress determination by diffraction methods in a single exposure greatly simplifies the measurement process and permits the design of portable systems without complex sample cradles or moving parts. An additional advantage is the ability to see the entire or a large fraction of the Debye ring and thus determine texture and grain size effects before analysis. The two methods most commonly used to obtain stress from a single Debye ring are the so-called [Formula: see text] and full-ring fitting methods, which employ least-squares procedures to determine the stress from the distortion of a Debye ring by probing a set of scattering vector simultaneously. The widely applied [Formula: see text] method, in contrast, requires sample rotations to probe a different subset of scattering vector orientations. In this paper, we first present a description of the different methods under the same formalism and using a unified set of coordinates that are suited to area detectors normal to the incident beam, highlighting the similarities and differences between them. We further characterize these methods by means of in situ measurements in carbon steel tube samples, using a portable detector in reflection geometry. We show that, in the absence of plastic flow, the different methods yield basically the same results and are equivalent. An analysis of possible sources of errors and their impact in the final stress values is also presented.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-9837-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-06, Vol.51 (11), p.5343-5355
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1864555699
source SpringerLink Journals - AutoHoldings
subjects Carbon steel
Carbon steels
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Comparative analysis
Crystallography and Scattering Methods
Design analysis
Detectors
Ferritic stainless steels
Grain size
In situ measurement
Materials Science
Methods
Original Paper
Plastic flow
Polymer Sciences
Portability
Portable equipment
Scattering
Sensors
Size effects
Solid Mechanics
Stress measurement
Stresses
Surface layer
Texture
title Stress measurement using area detectors: a theoretical and experimental comparison of different methods in ferritic steel using a portable X-ray apparatus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A36%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20measurement%20using%20area%20detectors:%20a%20theoretical%20and%20experimental%20comparison%20of%20different%20methods%20in%20ferritic%20steel%20using%20a%20portable%20X-ray%20apparatus&rft.jtitle=Journal%20of%20materials%20science&rft.au=Ramirez-Rico,%20J.&rft.date=2016-06-01&rft.volume=51&rft.issue=11&rft.spage=5343&rft.epage=5355&rft.pages=5343-5355&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-9837-3&rft_dat=%3Cgale_proqu%3EA446663277%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259627692&rft_id=info:pmid/&rft_galeid=A446663277&rfr_iscdi=true