Corrosion of Aluminium Aerospace Alloys

The Junkers F13 airplane, which began production in 1919, was the first plane to be built using aluminum aerospace alloys. Nearly 100 years later, approximately 1,800 new planes are being built each year with aluminum aerospace alloys. For the five trillion or so dollars worth of existing aging airp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2016-11, Vol.877, p.485-491
1. Verfasser: Staley, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue
container_start_page 485
container_title Materials science forum
container_volume 877
creator Staley, J.T.
description The Junkers F13 airplane, which began production in 1919, was the first plane to be built using aluminum aerospace alloys. Nearly 100 years later, approximately 1,800 new planes are being built each year with aluminum aerospace alloys. For the five trillion or so dollars worth of existing aging airplanes, cost of aerospace corrosion in United States alone is an estimated 23 billion dollars per year. In addition, hidden corrosion costs have contributed to a bigger impact in the commercial aircraft industry. In 1988, in the corrosion sensitive environment of the Hawaiian islands, an Aloha Airlines 737 aircraft suffered an in-flight failure due to crevice corrosion in the lap joint of the fuselage. After this event, the aviation technical community launched a new era of advanced technology, improved procedures and higher standards for maintaining the world’s aging and corroding aircraft. This paper discusses types of corrosion that affect aluminum aerospace alloys including crevice corrosion, pitting, exfoliation, intergranular, stress corrosion cracking (SCC) and corrosion fatigue. Standardized testing to determine if the alloy is susceptible to these types of corrosion is explained and examples of how to mitigate certain types of corrosion is discussed.
doi_str_mv 10.4028/www.scientific.net/MSF.877.485
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864555429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864555429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3375-d4b59208aa6cef9d39f68c37b31f210a2165cb8bd2480a7b7210c2a7508c058e3</originalsourceid><addsrcrecordid>eNqNkEtLAzEUhYMPsNb-h67UzUzzmJtkNmIpVoWKC3UdMmkGU2YmNZlh6L83UsGtqwuHw8e5H0LXBOcFpnIxjmMejbNd72pn8s72i5e3dS6FyAsJJ2hCOKdZKYCeolkpJMMMBMGA6RmaYAqQQSH4BbqMcYcxI5LwCbpZ-RB8dL6b-3q-bIbWdW5o50ub0r02NmWNP8QrdF7rJtrZ752ij_XD--op27w-Pq-Wm8wwJiDbFhWUFEutubF1uWVlzaVhomKkpgRrSjiYSlZbWkisRSVSaKgWgKXBIC2botsjdx_812Bjr1oXjW0a3Vk_REUkLwCgoGWq3h2rJk2NwdZqH1yrw0ERrH6MqWRM_RlTyZhKxlQyppKxBLg_Avqgu9hb86l2fghd-u-_iG_DoXmB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864555429</pqid></control><display><type>article</type><title>Corrosion of Aluminium Aerospace Alloys</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>Scientific.net Journals</source><creator>Staley, J.T.</creator><creatorcontrib>Staley, J.T.</creatorcontrib><description>The Junkers F13 airplane, which began production in 1919, was the first plane to be built using aluminum aerospace alloys. Nearly 100 years later, approximately 1,800 new planes are being built each year with aluminum aerospace alloys. For the five trillion or so dollars worth of existing aging airplanes, cost of aerospace corrosion in United States alone is an estimated 23 billion dollars per year. In addition, hidden corrosion costs have contributed to a bigger impact in the commercial aircraft industry. In 1988, in the corrosion sensitive environment of the Hawaiian islands, an Aloha Airlines 737 aircraft suffered an in-flight failure due to crevice corrosion in the lap joint of the fuselage. After this event, the aviation technical community launched a new era of advanced technology, improved procedures and higher standards for maintaining the world’s aging and corroding aircraft. This paper discusses types of corrosion that affect aluminum aerospace alloys including crevice corrosion, pitting, exfoliation, intergranular, stress corrosion cracking (SCC) and corrosion fatigue. Standardized testing to determine if the alloy is susceptible to these types of corrosion is explained and examples of how to mitigate certain types of corrosion is discussed.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>ISBN: 9783035710502</identifier><identifier>ISBN: 3035710503</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.877.485</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><subject>Aerospace ; Aging aircraft ; Aircraft ; Airplanes ; Alloys ; Aluminum base alloys ; Corrosion</subject><ispartof>Materials science forum, 2016-11, Vol.877, p.485-491</ispartof><rights>2017 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3375-d4b59208aa6cef9d39f68c37b31f210a2165cb8bd2480a7b7210c2a7508c058e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4400?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925,33531,33704,34315</link.rule.ids></links><search><creatorcontrib>Staley, J.T.</creatorcontrib><title>Corrosion of Aluminium Aerospace Alloys</title><title>Materials science forum</title><description>The Junkers F13 airplane, which began production in 1919, was the first plane to be built using aluminum aerospace alloys. Nearly 100 years later, approximately 1,800 new planes are being built each year with aluminum aerospace alloys. For the five trillion or so dollars worth of existing aging airplanes, cost of aerospace corrosion in United States alone is an estimated 23 billion dollars per year. In addition, hidden corrosion costs have contributed to a bigger impact in the commercial aircraft industry. In 1988, in the corrosion sensitive environment of the Hawaiian islands, an Aloha Airlines 737 aircraft suffered an in-flight failure due to crevice corrosion in the lap joint of the fuselage. After this event, the aviation technical community launched a new era of advanced technology, improved procedures and higher standards for maintaining the world’s aging and corroding aircraft. This paper discusses types of corrosion that affect aluminum aerospace alloys including crevice corrosion, pitting, exfoliation, intergranular, stress corrosion cracking (SCC) and corrosion fatigue. Standardized testing to determine if the alloy is susceptible to these types of corrosion is explained and examples of how to mitigate certain types of corrosion is discussed.</description><subject>Aerospace</subject><subject>Aging aircraft</subject><subject>Aircraft</subject><subject>Airplanes</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Corrosion</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><isbn>9783035710502</isbn><isbn>3035710503</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEUhYMPsNb-h67UzUzzmJtkNmIpVoWKC3UdMmkGU2YmNZlh6L83UsGtqwuHw8e5H0LXBOcFpnIxjmMejbNd72pn8s72i5e3dS6FyAsJJ2hCOKdZKYCeolkpJMMMBMGA6RmaYAqQQSH4BbqMcYcxI5LwCbpZ-RB8dL6b-3q-bIbWdW5o50ub0r02NmWNP8QrdF7rJtrZ752ij_XD--op27w-Pq-Wm8wwJiDbFhWUFEutubF1uWVlzaVhomKkpgRrSjiYSlZbWkisRSVSaKgWgKXBIC2botsjdx_812Bjr1oXjW0a3Vk_REUkLwCgoGWq3h2rJk2NwdZqH1yrw0ERrH6MqWRM_RlTyZhKxlQyppKxBLg_Avqgu9hb86l2fghd-u-_iG_DoXmB</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Staley, J.T.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20161101</creationdate><title>Corrosion of Aluminium Aerospace Alloys</title><author>Staley, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3375-d4b59208aa6cef9d39f68c37b31f210a2165cb8bd2480a7b7210c2a7508c058e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerospace</topic><topic>Aging aircraft</topic><topic>Aircraft</topic><topic>Airplanes</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Corrosion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staley, J.T.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staley, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion of Aluminium Aerospace Alloys</atitle><jtitle>Materials science forum</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>877</volume><spage>485</spage><epage>491</epage><pages>485-491</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><isbn>9783035710502</isbn><isbn>3035710503</isbn><abstract>The Junkers F13 airplane, which began production in 1919, was the first plane to be built using aluminum aerospace alloys. Nearly 100 years later, approximately 1,800 new planes are being built each year with aluminum aerospace alloys. For the five trillion or so dollars worth of existing aging airplanes, cost of aerospace corrosion in United States alone is an estimated 23 billion dollars per year. In addition, hidden corrosion costs have contributed to a bigger impact in the commercial aircraft industry. In 1988, in the corrosion sensitive environment of the Hawaiian islands, an Aloha Airlines 737 aircraft suffered an in-flight failure due to crevice corrosion in the lap joint of the fuselage. After this event, the aviation technical community launched a new era of advanced technology, improved procedures and higher standards for maintaining the world’s aging and corroding aircraft. This paper discusses types of corrosion that affect aluminum aerospace alloys including crevice corrosion, pitting, exfoliation, intergranular, stress corrosion cracking (SCC) and corrosion fatigue. Standardized testing to determine if the alloy is susceptible to these types of corrosion is explained and examples of how to mitigate certain types of corrosion is discussed.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.877.485</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2016-11, Vol.877, p.485-491
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_1864555429
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; Scientific.net Journals
subjects Aerospace
Aging aircraft
Aircraft
Airplanes
Alloys
Aluminum base alloys
Corrosion
title Corrosion of Aluminium Aerospace Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20of%20Aluminium%20Aerospace%20Alloys&rft.jtitle=Materials%20science%20forum&rft.au=Staley,%20J.T.&rft.date=2016-11-01&rft.volume=877&rft.spage=485&rft.epage=491&rft.pages=485-491&rft.issn=0255-5476&rft.eissn=1662-9752&rft.isbn=9783035710502&rft.isbn_list=3035710503&rft_id=info:doi/10.4028/www.scientific.net/MSF.877.485&rft_dat=%3Cproquest_cross%3E1864555429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864555429&rft_id=info:pmid/&rfr_iscdi=true