An isogeometric boundary element method for three dimensional potential problems

Isogeometric analysis (IGA) coupled with boundary element method, i.e. IGABEM, received a lot of attention in recent years. In this paper, we extend the IGABEM to solve 3D potential problems. This method offers a number of key improvements compared with conventional piecewise polynomial formulations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-03, Vol.313, p.454-468
Hauptverfasser: Gong, Y.P., Dong, C.Y., Qin, X.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue
container_start_page 454
container_title Journal of computational and applied mathematics
container_volume 313
creator Gong, Y.P.
Dong, C.Y.
Qin, X.C.
description Isogeometric analysis (IGA) coupled with boundary element method, i.e. IGABEM, received a lot of attention in recent years. In this paper, we extend the IGABEM to solve 3D potential problems. This method offers a number of key improvements compared with conventional piecewise polynomial formulations. Firstly, the models for analysis in the IGABEM are exact geometrical representation no matter how coarse the discretization of the studied bodies is, thus the IGABEM ensures that no geometrical errors are produced in the analysis process. Secondly, a meshing process is no longer required, which means redundant computations are eliminated to allow analysis to be carried out with greatly reduced pre-processing. To accurately evaluate the singular integrals appearing in our method, the power series expansion method is employed. The integration surface is on the real surface of the model, rather than the interpolation surface, i.e. no geometrical errors. Thus, the value of integral is more accurate than the traditional boundary element method, which can improve the computation accuracy of the IGABEM. Some numerical examples for 3D potential problems are used to validate the solutions of the present method with analytical and numerical solutions available.
doi_str_mv 10.1016/j.cam.2016.10.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864555393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716304824</els_id><sourcerecordid>1864555393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-8b7e5f2d75b82e8f043b70fab7e674e9344365302f5649f0ac9788e1715fc6c53</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcPORS8o6tmNHnCrES6oEBzhbibOmrpK42CkSf4-jcua0s6OZXc0Qcs1gxYBVt7uVbYZVmWHeVwD8hCyYVnXBlNKnZAFcqQJEqc7JRUo7AKhqJhbkbT1Sn8InhgGn6C1tw2HsmvhDsccBx4lmfhs66kKk0zYi0s5nPvkwNj3dhylr_IxiaLMjXZIz1_QJr_7mknw8PrzfPxeb16eX-_WmsBLqqdCtQunKTslWl6gdCN4qcE2mKyWw5kLwSnIonaxE7aCxtdIamWLS2cpKviQ3x7v58dcB02QGnyz2fTNiOCTDdCWklLzmWcqOUhtDShGd2Uc_5IyGgZnbMzuT2zNzezOV28ueu6MHc4Zvj9Ek63G02PmIdjJd8P-4fwFWQHgl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864555393</pqid></control><display><type>article</type><title>An isogeometric boundary element method for three dimensional potential problems</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gong, Y.P. ; Dong, C.Y. ; Qin, X.C.</creator><creatorcontrib>Gong, Y.P. ; Dong, C.Y. ; Qin, X.C.</creatorcontrib><description>Isogeometric analysis (IGA) coupled with boundary element method, i.e. IGABEM, received a lot of attention in recent years. In this paper, we extend the IGABEM to solve 3D potential problems. This method offers a number of key improvements compared with conventional piecewise polynomial formulations. Firstly, the models for analysis in the IGABEM are exact geometrical representation no matter how coarse the discretization of the studied bodies is, thus the IGABEM ensures that no geometrical errors are produced in the analysis process. Secondly, a meshing process is no longer required, which means redundant computations are eliminated to allow analysis to be carried out with greatly reduced pre-processing. To accurately evaluate the singular integrals appearing in our method, the power series expansion method is employed. The integration surface is on the real surface of the model, rather than the interpolation surface, i.e. no geometrical errors. Thus, the value of integral is more accurate than the traditional boundary element method, which can improve the computation accuracy of the IGABEM. Some numerical examples for 3D potential problems are used to validate the solutions of the present method with analytical and numerical solutions available.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.10.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D IGABEM ; Boundary element method ; Computation ; Integrals ; Interpolation ; Mathematical analysis ; Mathematical models ; Permissible error ; Polynomials ; Potential problems ; Power series expansion method ; Singular integrals</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.313, p.454-468</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-8b7e5f2d75b82e8f043b70fab7e674e9344365302f5649f0ac9788e1715fc6c53</citedby><cites>FETCH-LOGICAL-c509t-8b7e5f2d75b82e8f043b70fab7e674e9344365302f5649f0ac9788e1715fc6c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042716304824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Gong, Y.P.</creatorcontrib><creatorcontrib>Dong, C.Y.</creatorcontrib><creatorcontrib>Qin, X.C.</creatorcontrib><title>An isogeometric boundary element method for three dimensional potential problems</title><title>Journal of computational and applied mathematics</title><description>Isogeometric analysis (IGA) coupled with boundary element method, i.e. IGABEM, received a lot of attention in recent years. In this paper, we extend the IGABEM to solve 3D potential problems. This method offers a number of key improvements compared with conventional piecewise polynomial formulations. Firstly, the models for analysis in the IGABEM are exact geometrical representation no matter how coarse the discretization of the studied bodies is, thus the IGABEM ensures that no geometrical errors are produced in the analysis process. Secondly, a meshing process is no longer required, which means redundant computations are eliminated to allow analysis to be carried out with greatly reduced pre-processing. To accurately evaluate the singular integrals appearing in our method, the power series expansion method is employed. The integration surface is on the real surface of the model, rather than the interpolation surface, i.e. no geometrical errors. Thus, the value of integral is more accurate than the traditional boundary element method, which can improve the computation accuracy of the IGABEM. Some numerical examples for 3D potential problems are used to validate the solutions of the present method with analytical and numerical solutions available.</description><subject>3D IGABEM</subject><subject>Boundary element method</subject><subject>Computation</subject><subject>Integrals</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Permissible error</subject><subject>Polynomials</subject><subject>Potential problems</subject><subject>Power series expansion method</subject><subject>Singular integrals</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcPORS8o6tmNHnCrES6oEBzhbibOmrpK42CkSf4-jcua0s6OZXc0Qcs1gxYBVt7uVbYZVmWHeVwD8hCyYVnXBlNKnZAFcqQJEqc7JRUo7AKhqJhbkbT1Sn8InhgGn6C1tw2HsmvhDsccBx4lmfhs66kKk0zYi0s5nPvkwNj3dhylr_IxiaLMjXZIz1_QJr_7mknw8PrzfPxeb16eX-_WmsBLqqdCtQunKTslWl6gdCN4qcE2mKyWw5kLwSnIonaxE7aCxtdIamWLS2cpKviQ3x7v58dcB02QGnyz2fTNiOCTDdCWklLzmWcqOUhtDShGd2Uc_5IyGgZnbMzuT2zNzezOV28ueu6MHc4Zvj9Ek63G02PmIdjJd8P-4fwFWQHgl</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Gong, Y.P.</creator><creator>Dong, C.Y.</creator><creator>Qin, X.C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170315</creationdate><title>An isogeometric boundary element method for three dimensional potential problems</title><author>Gong, Y.P. ; Dong, C.Y. ; Qin, X.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-8b7e5f2d75b82e8f043b70fab7e674e9344365302f5649f0ac9788e1715fc6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>3D IGABEM</topic><topic>Boundary element method</topic><topic>Computation</topic><topic>Integrals</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Permissible error</topic><topic>Polynomials</topic><topic>Potential problems</topic><topic>Power series expansion method</topic><topic>Singular integrals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Y.P.</creatorcontrib><creatorcontrib>Dong, C.Y.</creatorcontrib><creatorcontrib>Qin, X.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Y.P.</au><au>Dong, C.Y.</au><au>Qin, X.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An isogeometric boundary element method for three dimensional potential problems</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>313</volume><spage>454</spage><epage>468</epage><pages>454-468</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>Isogeometric analysis (IGA) coupled with boundary element method, i.e. IGABEM, received a lot of attention in recent years. In this paper, we extend the IGABEM to solve 3D potential problems. This method offers a number of key improvements compared with conventional piecewise polynomial formulations. Firstly, the models for analysis in the IGABEM are exact geometrical representation no matter how coarse the discretization of the studied bodies is, thus the IGABEM ensures that no geometrical errors are produced in the analysis process. Secondly, a meshing process is no longer required, which means redundant computations are eliminated to allow analysis to be carried out with greatly reduced pre-processing. To accurately evaluate the singular integrals appearing in our method, the power series expansion method is employed. The integration surface is on the real surface of the model, rather than the interpolation surface, i.e. no geometrical errors. Thus, the value of integral is more accurate than the traditional boundary element method, which can improve the computation accuracy of the IGABEM. Some numerical examples for 3D potential problems are used to validate the solutions of the present method with analytical and numerical solutions available.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.10.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2017-03, Vol.313, p.454-468
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1864555393
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3D IGABEM
Boundary element method
Computation
Integrals
Interpolation
Mathematical analysis
Mathematical models
Permissible error
Polynomials
Potential problems
Power series expansion method
Singular integrals
title An isogeometric boundary element method for three dimensional potential problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20isogeometric%20boundary%20element%20method%20for%20three%20dimensional%20potential%20problems&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Gong,%20Y.P.&rft.date=2017-03-15&rft.volume=313&rft.spage=454&rft.epage=468&rft.pages=454-468&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.10.003&rft_dat=%3Cproquest_cross%3E1864555393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864555393&rft_id=info:pmid/&rft_els_id=S0377042716304824&rfr_iscdi=true