Eringen’s Stress Gradient Model for Bending of Nonlocal Beams
AbstractThis paper is concerned with the bending response of nonlocal elastic beams under transverse loads, where the nonlocal elastic model of Eringen, also called the stress gradient model, is used. This model is known to exhibit some paradoxical responses when applied to beams with certain types...
Gespeichert in:
Veröffentlicht in: | Journal of engineering mechanics 2016-12, Vol.142 (12) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of engineering mechanics |
container_volume | 142 |
creator | Challamel, Noël Reddy, J. N Wang, C. M |
description | AbstractThis paper is concerned with the bending response of nonlocal elastic beams under transverse loads, where the nonlocal elastic model of Eringen, also called the stress gradient model, is used. This model is known to exhibit some paradoxical responses when applied to beams with certain types of boundary conditions. In particular, for clamped-free boundary condition, this nonlocal model is not able to predict scale effects in the presence of concentrated loads, or it leads to an apparent stiffening effect for distributed loads in contrast to other boundary conditions for which softening effect is observed. In the literature, these paradoxes have been resolved by changing the kernel of the nonlocal model or by modifying the standard boundary conditions. In this paper, the paradox is solved from the nonlocal differential model itself via some related discontinuous nonlocal kinematics. It is shown that the kinematics related to the nonlocal constitutive law lead to the use of moment or shear discontinuities. With such a nonlocal differential model coupled with the nonlocal discontinuity requirements, the beam effectively shows a softening response irrespective of the boundary conditions studied, including the clamped-free boundary conditions, and thereby resolves the paradox. The model is also compared to lattice-based solutions where an excellent agreement between the present nonlocal model and the lattice one is obtained. Finally, the stress gradient model is shown to be cast in a stress-based variational framework, which coincides with a Timoshenko-type model where the shear effect is shown to play the nonlocal role. |
doi_str_mv | 10.1061/(ASCE)EM.1943-7889.0001161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864554702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864554702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-6fbe1e8a893f291fec868fcaef9d6fd889c5cceb144ef10b9d369dae2a9e47c23</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwDhZTGVLs2HViFlSqUJBaGAqz5dpnlCqNi50MbLwGr8eTkKhVN6aTTv_36-5D6JqSMSWC3o6mq1lxUyzHVHKWZHkux4QQSgU9QYPj7hQNSMZYIpmU5-gixk2X4UKKAbovQll_QP37_RPxqgkQI54HbUuoG7z0FirsfMAPUNsuh73DL76uvNFVt9PbeInOnK4iXB3mEL0_Fm-zp2TxOn-eTReJZjxtEuHWQCHXuWQuldSByUXujAYnrXC2u9FMjIE15RwcJWtpmZBWQ6ol8MykbIhG-95d8J8txEZty2igqnQNvo2K5oJPJjwjffRuHzXBxxjAqV0otzp8KUpUb02p3poqlqo3pHpD6mCtg8Ue1l272vg21N1bR_J_8A_ZjXKW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864554702</pqid></control><display><type>article</type><title>Eringen’s Stress Gradient Model for Bending of Nonlocal Beams</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Challamel, Noël ; Reddy, J. N ; Wang, C. M</creator><creatorcontrib>Challamel, Noël ; Reddy, J. N ; Wang, C. M</creatorcontrib><description>AbstractThis paper is concerned with the bending response of nonlocal elastic beams under transverse loads, where the nonlocal elastic model of Eringen, also called the stress gradient model, is used. This model is known to exhibit some paradoxical responses when applied to beams with certain types of boundary conditions. In particular, for clamped-free boundary condition, this nonlocal model is not able to predict scale effects in the presence of concentrated loads, or it leads to an apparent stiffening effect for distributed loads in contrast to other boundary conditions for which softening effect is observed. In the literature, these paradoxes have been resolved by changing the kernel of the nonlocal model or by modifying the standard boundary conditions. In this paper, the paradox is solved from the nonlocal differential model itself via some related discontinuous nonlocal kinematics. It is shown that the kinematics related to the nonlocal constitutive law lead to the use of moment or shear discontinuities. With such a nonlocal differential model coupled with the nonlocal discontinuity requirements, the beam effectively shows a softening response irrespective of the boundary conditions studied, including the clamped-free boundary conditions, and thereby resolves the paradox. The model is also compared to lattice-based solutions where an excellent agreement between the present nonlocal model and the lattice one is obtained. Finally, the stress gradient model is shown to be cast in a stress-based variational framework, which coincides with a Timoshenko-type model where the shear effect is shown to play the nonlocal role.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)EM.1943-7889.0001161</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Bending ; Boundary conditions ; Discontinuity ; Kinematics ; Mathematical models ; Paradoxes ; Softening ; Stresses ; Technical Papers</subject><ispartof>Journal of engineering mechanics, 2016-12, Vol.142 (12)</ispartof><rights>2016 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-6fbe1e8a893f291fec868fcaef9d6fd889c5cceb144ef10b9d369dae2a9e47c23</citedby><cites>FETCH-LOGICAL-a342t-6fbe1e8a893f291fec868fcaef9d6fd889c5cceb144ef10b9d369dae2a9e47c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EM.1943-7889.0001161$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0001161$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,76203,76211</link.rule.ids></links><search><creatorcontrib>Challamel, Noël</creatorcontrib><creatorcontrib>Reddy, J. N</creatorcontrib><creatorcontrib>Wang, C. M</creatorcontrib><title>Eringen’s Stress Gradient Model for Bending of Nonlocal Beams</title><title>Journal of engineering mechanics</title><description>AbstractThis paper is concerned with the bending response of nonlocal elastic beams under transverse loads, where the nonlocal elastic model of Eringen, also called the stress gradient model, is used. This model is known to exhibit some paradoxical responses when applied to beams with certain types of boundary conditions. In particular, for clamped-free boundary condition, this nonlocal model is not able to predict scale effects in the presence of concentrated loads, or it leads to an apparent stiffening effect for distributed loads in contrast to other boundary conditions for which softening effect is observed. In the literature, these paradoxes have been resolved by changing the kernel of the nonlocal model or by modifying the standard boundary conditions. In this paper, the paradox is solved from the nonlocal differential model itself via some related discontinuous nonlocal kinematics. It is shown that the kinematics related to the nonlocal constitutive law lead to the use of moment or shear discontinuities. With such a nonlocal differential model coupled with the nonlocal discontinuity requirements, the beam effectively shows a softening response irrespective of the boundary conditions studied, including the clamped-free boundary conditions, and thereby resolves the paradox. The model is also compared to lattice-based solutions where an excellent agreement between the present nonlocal model and the lattice one is obtained. Finally, the stress gradient model is shown to be cast in a stress-based variational framework, which coincides with a Timoshenko-type model where the shear effect is shown to play the nonlocal role.</description><subject>Bending</subject><subject>Boundary conditions</subject><subject>Discontinuity</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Paradoxes</subject><subject>Softening</subject><subject>Stresses</subject><subject>Technical Papers</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwDhZTGVLs2HViFlSqUJBaGAqz5dpnlCqNi50MbLwGr8eTkKhVN6aTTv_36-5D6JqSMSWC3o6mq1lxUyzHVHKWZHkux4QQSgU9QYPj7hQNSMZYIpmU5-gixk2X4UKKAbovQll_QP37_RPxqgkQI54HbUuoG7z0FirsfMAPUNsuh73DL76uvNFVt9PbeInOnK4iXB3mEL0_Fm-zp2TxOn-eTReJZjxtEuHWQCHXuWQuldSByUXujAYnrXC2u9FMjIE15RwcJWtpmZBWQ6ol8MykbIhG-95d8J8txEZty2igqnQNvo2K5oJPJjwjffRuHzXBxxjAqV0otzp8KUpUb02p3poqlqo3pHpD6mCtg8Ue1l272vg21N1bR_J_8A_ZjXKW</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Challamel, Noël</creator><creator>Reddy, J. N</creator><creator>Wang, C. M</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20161201</creationdate><title>Eringen’s Stress Gradient Model for Bending of Nonlocal Beams</title><author>Challamel, Noël ; Reddy, J. N ; Wang, C. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-6fbe1e8a893f291fec868fcaef9d6fd889c5cceb144ef10b9d369dae2a9e47c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bending</topic><topic>Boundary conditions</topic><topic>Discontinuity</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Paradoxes</topic><topic>Softening</topic><topic>Stresses</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Challamel, Noël</creatorcontrib><creatorcontrib>Reddy, J. N</creatorcontrib><creatorcontrib>Wang, C. M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Challamel, Noël</au><au>Reddy, J. N</au><au>Wang, C. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eringen’s Stress Gradient Model for Bending of Nonlocal Beams</atitle><jtitle>Journal of engineering mechanics</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>142</volume><issue>12</issue><issn>0733-9399</issn><eissn>1943-7889</eissn><abstract>AbstractThis paper is concerned with the bending response of nonlocal elastic beams under transverse loads, where the nonlocal elastic model of Eringen, also called the stress gradient model, is used. This model is known to exhibit some paradoxical responses when applied to beams with certain types of boundary conditions. In particular, for clamped-free boundary condition, this nonlocal model is not able to predict scale effects in the presence of concentrated loads, or it leads to an apparent stiffening effect for distributed loads in contrast to other boundary conditions for which softening effect is observed. In the literature, these paradoxes have been resolved by changing the kernel of the nonlocal model or by modifying the standard boundary conditions. In this paper, the paradox is solved from the nonlocal differential model itself via some related discontinuous nonlocal kinematics. It is shown that the kinematics related to the nonlocal constitutive law lead to the use of moment or shear discontinuities. With such a nonlocal differential model coupled with the nonlocal discontinuity requirements, the beam effectively shows a softening response irrespective of the boundary conditions studied, including the clamped-free boundary conditions, and thereby resolves the paradox. The model is also compared to lattice-based solutions where an excellent agreement between the present nonlocal model and the lattice one is obtained. Finally, the stress gradient model is shown to be cast in a stress-based variational framework, which coincides with a Timoshenko-type model where the shear effect is shown to play the nonlocal role.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EM.1943-7889.0001161</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9399 |
ispartof | Journal of engineering mechanics, 2016-12, Vol.142 (12) |
issn | 0733-9399 1943-7889 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864554702 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Bending Boundary conditions Discontinuity Kinematics Mathematical models Paradoxes Softening Stresses Technical Papers |
title | Eringen’s Stress Gradient Model for Bending of Nonlocal Beams |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T23%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eringen%E2%80%99s%20Stress%20Gradient%20Model%20for%20Bending%20of%20Nonlocal%20Beams&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=Challamel,%20No%C3%ABl&rft.date=2016-12-01&rft.volume=142&rft.issue=12&rft.issn=0733-9399&rft.eissn=1943-7889&rft_id=info:doi/10.1061/(ASCE)EM.1943-7889.0001161&rft_dat=%3Cproquest_cross%3E1864554702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864554702&rft_id=info:pmid/&rfr_iscdi=true |