Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings

AbstractA concurrent simulation and experimental validation for curvilinear fatigue crack growth (FCG) analysis under both constant amplitude and overload spectrums is proposed in this paper. The simulation methodology is based on a small time-scale fatigue crack growth model and the extended finite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aerospace engineering 2015-01, Vol.28 (1)
Hauptverfasser: Lu, Zizi, Xu, Jifeng, Wang, Lei, Zhang, Jianren, Liu, Yongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of aerospace engineering
container_volume 28
creator Lu, Zizi
Xu, Jifeng
Wang, Lei
Zhang, Jianren
Liu, Yongming
description AbstractA concurrent simulation and experimental validation for curvilinear fatigue crack growth (FCG) analysis under both constant amplitude and overload spectrums is proposed in this paper. The simulation methodology is based on a small time-scale fatigue crack growth model and the extended finite element method (XFEM) to calculate the stress intensity factor solution of an arbitrary curvilinear crack. Parametric studies are used to determine the algorithm parameters in the numerical fatigue crack growth simulation. Following this, experimental testing on modified compact specimens is performed under both constant amplitude and overload loadings for model validation. Experimentally measured crack growth orientations and lengths are compared with numerical simulations. Both the experimental and simulation results show the overload retardation behavior for curvilinear cracks under overload loadings. The investigated periodic overload loading has no significant impact on the crack growth orientations. Several conclusions and areas of future work are identified based on the proposed numerical and experimental investigations.
doi_str_mv 10.1061/(ASCE)AS.1943-5525.0000337
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864554107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864554107</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-fd66b939e190a8b6e77236010fbf052059534d7d27a3c07329e2a082851832d13</originalsourceid><addsrcrecordid>eNp1kMlOwzAQQC0EEqXwDxanckjxEmfhFkVtQarUQ4Gr5cZOcUnsYsdF_D0JrXrDh7FmeSPNA-AeoylGCX6cFOty9lCspziPacQYYVPUP0rTCzA61y7BCGU5jTAl-BrceL9DCMdJTkZAl8EddKONEg7ORae3QcHSieoTLpz97j7gWreh6RvWQGEkfBeNlsc0GKkcLK3xnTAdLNp9o7sg1d_c6qBcY4WEyz5os_W34KoWjVd3p38M3uaz1_I5Wq4WL2WxjASNSRfVMkk2Oc0VzpHINolKU0IThFG9qREjiOWMxjKVJBW0QikluSICZSRjOKNEYjoGk-PevbNfQfmOt9pXqmmEUTZ4jrMkZizGPTsGT8fRylnvnar53ulWuB-OER_8cj747QMfXPLBJT_57eHkCIt-O9_Z4Ex_1pn8H_wF6GN-8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864554107</pqid></control><display><type>article</type><title>Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lu, Zizi ; Xu, Jifeng ; Wang, Lei ; Zhang, Jianren ; Liu, Yongming</creator><creatorcontrib>Lu, Zizi ; Xu, Jifeng ; Wang, Lei ; Zhang, Jianren ; Liu, Yongming</creatorcontrib><description>AbstractA concurrent simulation and experimental validation for curvilinear fatigue crack growth (FCG) analysis under both constant amplitude and overload spectrums is proposed in this paper. The simulation methodology is based on a small time-scale fatigue crack growth model and the extended finite element method (XFEM) to calculate the stress intensity factor solution of an arbitrary curvilinear crack. Parametric studies are used to determine the algorithm parameters in the numerical fatigue crack growth simulation. Following this, experimental testing on modified compact specimens is performed under both constant amplitude and overload loadings for model validation. Experimentally measured crack growth orientations and lengths are compared with numerical simulations. Both the experimental and simulation results show the overload retardation behavior for curvilinear cracks under overload loadings. The investigated periodic overload loading has no significant impact on the crack growth orientations. Several conclusions and areas of future work are identified based on the proposed numerical and experimental investigations.</description><identifier>ISSN: 0893-1321</identifier><identifier>EISSN: 1943-5525</identifier><identifier>DOI: 10.1061/(ASCE)AS.1943-5525.0000337</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Amplitudes ; Computer simulation ; Constants ; Crack propagation ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Mathematical models ; Technical Papers</subject><ispartof>Journal of aerospace engineering, 2015-01, Vol.28 (1)</ispartof><rights>2014 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-fd66b939e190a8b6e77236010fbf052059534d7d27a3c07329e2a082851832d13</citedby><cites>FETCH-LOGICAL-a342t-fd66b939e190a8b6e77236010fbf052059534d7d27a3c07329e2a082851832d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)AS.1943-5525.0000337$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)AS.1943-5525.0000337$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,75940,75948</link.rule.ids></links><search><creatorcontrib>Lu, Zizi</creatorcontrib><creatorcontrib>Xu, Jifeng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Jianren</creatorcontrib><creatorcontrib>Liu, Yongming</creatorcontrib><title>Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings</title><title>Journal of aerospace engineering</title><description>AbstractA concurrent simulation and experimental validation for curvilinear fatigue crack growth (FCG) analysis under both constant amplitude and overload spectrums is proposed in this paper. The simulation methodology is based on a small time-scale fatigue crack growth model and the extended finite element method (XFEM) to calculate the stress intensity factor solution of an arbitrary curvilinear crack. Parametric studies are used to determine the algorithm parameters in the numerical fatigue crack growth simulation. Following this, experimental testing on modified compact specimens is performed under both constant amplitude and overload loadings for model validation. Experimentally measured crack growth orientations and lengths are compared with numerical simulations. Both the experimental and simulation results show the overload retardation behavior for curvilinear cracks under overload loadings. The investigated periodic overload loading has no significant impact on the crack growth orientations. Several conclusions and areas of future work are identified based on the proposed numerical and experimental investigations.</description><subject>Amplitudes</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Crack propagation</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Mathematical models</subject><subject>Technical Papers</subject><issn>0893-1321</issn><issn>1943-5525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQQC0EEqXwDxanckjxEmfhFkVtQarUQ4Gr5cZOcUnsYsdF_D0JrXrDh7FmeSPNA-AeoylGCX6cFOty9lCspziPacQYYVPUP0rTCzA61y7BCGU5jTAl-BrceL9DCMdJTkZAl8EddKONEg7ORae3QcHSieoTLpz97j7gWreh6RvWQGEkfBeNlsc0GKkcLK3xnTAdLNp9o7sg1d_c6qBcY4WEyz5os_W34KoWjVd3p38M3uaz1_I5Wq4WL2WxjASNSRfVMkk2Oc0VzpHINolKU0IThFG9qREjiOWMxjKVJBW0QikluSICZSRjOKNEYjoGk-PevbNfQfmOt9pXqmmEUTZ4jrMkZizGPTsGT8fRylnvnar53ulWuB-OER_8cj747QMfXPLBJT_57eHkCIt-O9_Z4Ex_1pn8H_wF6GN-8w</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Lu, Zizi</creator><creator>Xu, Jifeng</creator><creator>Wang, Lei</creator><creator>Zhang, Jianren</creator><creator>Liu, Yongming</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings</title><author>Lu, Zizi ; Xu, Jifeng ; Wang, Lei ; Zhang, Jianren ; Liu, Yongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-fd66b939e190a8b6e77236010fbf052059534d7d27a3c07329e2a082851832d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amplitudes</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Crack propagation</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Mathematical models</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zizi</creatorcontrib><creatorcontrib>Xu, Jifeng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Zhang, Jianren</creatorcontrib><creatorcontrib>Liu, Yongming</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Zizi</au><au>Xu, Jifeng</au><au>Wang, Lei</au><au>Zhang, Jianren</au><au>Liu, Yongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings</atitle><jtitle>Journal of aerospace engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>28</volume><issue>1</issue><issn>0893-1321</issn><eissn>1943-5525</eissn><abstract>AbstractA concurrent simulation and experimental validation for curvilinear fatigue crack growth (FCG) analysis under both constant amplitude and overload spectrums is proposed in this paper. The simulation methodology is based on a small time-scale fatigue crack growth model and the extended finite element method (XFEM) to calculate the stress intensity factor solution of an arbitrary curvilinear crack. Parametric studies are used to determine the algorithm parameters in the numerical fatigue crack growth simulation. Following this, experimental testing on modified compact specimens is performed under both constant amplitude and overload loadings for model validation. Experimentally measured crack growth orientations and lengths are compared with numerical simulations. Both the experimental and simulation results show the overload retardation behavior for curvilinear cracks under overload loadings. The investigated periodic overload loading has no significant impact on the crack growth orientations. Several conclusions and areas of future work are identified based on the proposed numerical and experimental investigations.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)AS.1943-5525.0000337</doi></addata></record>
fulltext fulltext
identifier ISSN: 0893-1321
ispartof Journal of aerospace engineering, 2015-01, Vol.28 (1)
issn 0893-1321
1943-5525
language eng
recordid cdi_proquest_miscellaneous_1864554107
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Amplitudes
Computer simulation
Constants
Crack propagation
Fatigue cracks
Fatigue failure
Fracture mechanics
Mathematical models
Technical Papers
title Curvilinear Fatigue Crack Growth Simulation and Validation under Constant Amplitude and Overload Loadings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvilinear%20Fatigue%20Crack%20Growth%20Simulation%20and%20Validation%20under%20Constant%20Amplitude%20and%20Overload%20Loadings&rft.jtitle=Journal%20of%20aerospace%20engineering&rft.au=Lu,%20Zizi&rft.date=2015-01-01&rft.volume=28&rft.issue=1&rft.issn=0893-1321&rft.eissn=1943-5525&rft_id=info:doi/10.1061/(ASCE)AS.1943-5525.0000337&rft_dat=%3Cproquest_cross%3E1864554107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864554107&rft_id=info:pmid/&rfr_iscdi=true