The L-Functions and Modular Forms Database Project
The Langlands Programme, formulated by Robert Langlands in the 1960s and since much developed and refined, is a web of interrelated theory and conjectures concerning many objects in number theory, their interconnections, and connections to other fields. At the heart of the Langlands Programme is the...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2016-12, Vol.16 (6), p.1541-1553 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1553 |
---|---|
container_issue | 6 |
container_start_page | 1541 |
container_title | Foundations of computational mathematics |
container_volume | 16 |
creator | Cremona, John |
description | The Langlands Programme, formulated by Robert Langlands in the 1960s and since much developed and refined, is a web of interrelated theory and conjectures concerning many objects in number theory, their interconnections, and connections to other fields. At the heart of the Langlands Programme is the concept of an L-function. The most famous L-function is the Riemann zeta function, and as well as being ubiquitous in number theory itself, L-functions have applications in mathematical physics and cryptography. Two of the seven Clay Mathematics Million Dollar Millennium Problems, the Riemann Hypothesis and the Birch and Swinnerton-Dyer Conjecture, deal with their properties. Many different mathematical objects are connected in various ways to L-functions, but the study of those objects is highly specialized, and most mathematicians have only a vague idea of the objects outside their specialty and how everything is related. Helping mathematicians to understand these connections was the motivation for the L-functions and Modular Forms Database (LMFDB) project. Its mission is to chart the landscape of L-functions and modular forms in a systematic, comprehensive, and concrete fashion. This involves developing their theory, creating and improving algorithms for computing and classifying them, and hence discovering new properties of these functions, and testing fundamental conjectures. In the lecture I gave a very brief introduction to L-functions for non-experts and explained and demonstrated how the large collection of data in the LMFDB is organized and displayed, showing the interrelations between linked objects, through our website
www.lmfdb.org
. I also showed how this has been created by a worldwide open-source collaboration, which we hope may become a model for others. |
doi_str_mv | 10.1007/s10208-016-9306-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864550628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472880036</galeid><sourcerecordid>A472880036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-ca175ce20f5518382f19b4b6f1890e8d8d8a5c82ed7c3c420968e34d0811d3cd3</originalsourceid><addsrcrecordid>eNp10UFLHDEUB_BBWqjVfoDeBnppD9H3kkkmcxTrtsKKRe05ZDNv1llmE01moPXTN8sWZWUlh4Tw-z9C_kXxGeEEAerThMBBM0DFGgGKPR0Uh6hQMiG0ePd8ruWH4mNKKwCUDVaHBb-7p3LOZpN3Yx98Kq1vy6vQToON5SzEdSq_29EubKLyVwwrcuNx8b6zQ6JP__ej4vfs4u78J5tf_7g8P5szJwWOzFmspSMOnZSoheYdNotqoTrUDZBu87LSaU5t7YSrODRKk6ha0IitcK04Kr5u5z7E8DhRGs26T46GwXoKUzKoVSUlKK4z_fKKrsIUfX6d4aBEzZumgRe1tAOZ3ndhjNZthpqzquZaAwiVFdujluQp2iF46vp8veNP9vi8Wlr3bm_g204gm5H-jEs7pWQub292LW6tiyGlSJ15iP3axr8GwWyKN9viTS7ebIo3TznDt5mUrV9SfPmMt0P_ANYvqxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063729990</pqid></control><display><type>article</type><title>The L-Functions and Modular Forms Database Project</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cremona, John</creator><creatorcontrib>Cremona, John</creatorcontrib><description>The Langlands Programme, formulated by Robert Langlands in the 1960s and since much developed and refined, is a web of interrelated theory and conjectures concerning many objects in number theory, their interconnections, and connections to other fields. At the heart of the Langlands Programme is the concept of an L-function. The most famous L-function is the Riemann zeta function, and as well as being ubiquitous in number theory itself, L-functions have applications in mathematical physics and cryptography. Two of the seven Clay Mathematics Million Dollar Millennium Problems, the Riemann Hypothesis and the Birch and Swinnerton-Dyer Conjecture, deal with their properties. Many different mathematical objects are connected in various ways to L-functions, but the study of those objects is highly specialized, and most mathematicians have only a vague idea of the objects outside their specialty and how everything is related. Helping mathematicians to understand these connections was the motivation for the L-functions and Modular Forms Database (LMFDB) project. Its mission is to chart the landscape of L-functions and modular forms in a systematic, comprehensive, and concrete fashion. This involves developing their theory, creating and improving algorithms for computing and classifying them, and hence discovering new properties of these functions, and testing fundamental conjectures. In the lecture I gave a very brief introduction to L-functions for non-experts and explained and demonstrated how the large collection of data in the LMFDB is organized and displayed, showing the interrelations between linked objects, through our website
www.lmfdb.org
. I also showed how this has been created by a worldwide open-source collaboration, which we hope may become a model for others.</description><identifier>ISSN: 1615-3375</identifier><identifier>EISSN: 1615-3383</identifier><identifier>DOI: 10.1007/s10208-016-9306-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Analytic functions ; Applications of Mathematics ; Computation ; Computer Science ; Cryptography ; Economics ; Joints ; Lagrangian functions ; Lectures ; Linear and Multilinear Algebras ; Math Applications in Computer Science ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Matrix Theory ; Number theory ; Numerical Analysis</subject><ispartof>Foundations of computational mathematics, 2016-12, Vol.16 (6), p.1541-1553</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-ca175ce20f5518382f19b4b6f1890e8d8d8a5c82ed7c3c420968e34d0811d3cd3</citedby><cites>FETCH-LOGICAL-c531t-ca175ce20f5518382f19b4b6f1890e8d8d8a5c82ed7c3c420968e34d0811d3cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10208-016-9306-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10208-016-9306-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cremona, John</creatorcontrib><title>The L-Functions and Modular Forms Database Project</title><title>Foundations of computational mathematics</title><addtitle>Found Comput Math</addtitle><description>The Langlands Programme, formulated by Robert Langlands in the 1960s and since much developed and refined, is a web of interrelated theory and conjectures concerning many objects in number theory, their interconnections, and connections to other fields. At the heart of the Langlands Programme is the concept of an L-function. The most famous L-function is the Riemann zeta function, and as well as being ubiquitous in number theory itself, L-functions have applications in mathematical physics and cryptography. Two of the seven Clay Mathematics Million Dollar Millennium Problems, the Riemann Hypothesis and the Birch and Swinnerton-Dyer Conjecture, deal with their properties. Many different mathematical objects are connected in various ways to L-functions, but the study of those objects is highly specialized, and most mathematicians have only a vague idea of the objects outside their specialty and how everything is related. Helping mathematicians to understand these connections was the motivation for the L-functions and Modular Forms Database (LMFDB) project. Its mission is to chart the landscape of L-functions and modular forms in a systematic, comprehensive, and concrete fashion. This involves developing their theory, creating and improving algorithms for computing and classifying them, and hence discovering new properties of these functions, and testing fundamental conjectures. In the lecture I gave a very brief introduction to L-functions for non-experts and explained and demonstrated how the large collection of data in the LMFDB is organized and displayed, showing the interrelations between linked objects, through our website
www.lmfdb.org
. I also showed how this has been created by a worldwide open-source collaboration, which we hope may become a model for others.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytic functions</subject><subject>Applications of Mathematics</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Economics</subject><subject>Joints</subject><subject>Lagrangian functions</subject><subject>Lectures</subject><subject>Linear and Multilinear Algebras</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix Theory</subject><subject>Number theory</subject><subject>Numerical Analysis</subject><issn>1615-3375</issn><issn>1615-3383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp10UFLHDEUB_BBWqjVfoDeBnppD9H3kkkmcxTrtsKKRe05ZDNv1llmE01moPXTN8sWZWUlh4Tw-z9C_kXxGeEEAerThMBBM0DFGgGKPR0Uh6hQMiG0ePd8ruWH4mNKKwCUDVaHBb-7p3LOZpN3Yx98Kq1vy6vQToON5SzEdSq_29EubKLyVwwrcuNx8b6zQ6JP__ej4vfs4u78J5tf_7g8P5szJwWOzFmspSMOnZSoheYdNotqoTrUDZBu87LSaU5t7YSrODRKk6ha0IitcK04Kr5u5z7E8DhRGs26T46GwXoKUzKoVSUlKK4z_fKKrsIUfX6d4aBEzZumgRe1tAOZ3ndhjNZthpqzquZaAwiVFdujluQp2iF46vp8veNP9vi8Wlr3bm_g204gm5H-jEs7pWQub292LW6tiyGlSJ15iP3axr8GwWyKN9viTS7ebIo3TznDt5mUrV9SfPmMt0P_ANYvqxs</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Cremona, John</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161201</creationdate><title>The L-Functions and Modular Forms Database Project</title><author>Cremona, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-ca175ce20f5518382f19b4b6f1890e8d8d8a5c82ed7c3c420968e34d0811d3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytic functions</topic><topic>Applications of Mathematics</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Economics</topic><topic>Joints</topic><topic>Lagrangian functions</topic><topic>Lectures</topic><topic>Linear and Multilinear Algebras</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix Theory</topic><topic>Number theory</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cremona, John</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Foundations of computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cremona, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The L-Functions and Modular Forms Database Project</atitle><jtitle>Foundations of computational mathematics</jtitle><stitle>Found Comput Math</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>16</volume><issue>6</issue><spage>1541</spage><epage>1553</epage><pages>1541-1553</pages><issn>1615-3375</issn><eissn>1615-3383</eissn><abstract>The Langlands Programme, formulated by Robert Langlands in the 1960s and since much developed and refined, is a web of interrelated theory and conjectures concerning many objects in number theory, their interconnections, and connections to other fields. At the heart of the Langlands Programme is the concept of an L-function. The most famous L-function is the Riemann zeta function, and as well as being ubiquitous in number theory itself, L-functions have applications in mathematical physics and cryptography. Two of the seven Clay Mathematics Million Dollar Millennium Problems, the Riemann Hypothesis and the Birch and Swinnerton-Dyer Conjecture, deal with their properties. Many different mathematical objects are connected in various ways to L-functions, but the study of those objects is highly specialized, and most mathematicians have only a vague idea of the objects outside their specialty and how everything is related. Helping mathematicians to understand these connections was the motivation for the L-functions and Modular Forms Database (LMFDB) project. Its mission is to chart the landscape of L-functions and modular forms in a systematic, comprehensive, and concrete fashion. This involves developing their theory, creating and improving algorithms for computing and classifying them, and hence discovering new properties of these functions, and testing fundamental conjectures. In the lecture I gave a very brief introduction to L-functions for non-experts and explained and demonstrated how the large collection of data in the LMFDB is organized and displayed, showing the interrelations between linked objects, through our website
www.lmfdb.org
. I also showed how this has been created by a worldwide open-source collaboration, which we hope may become a model for others.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10208-016-9306-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-3375 |
ispartof | Foundations of computational mathematics, 2016-12, Vol.16 (6), p.1541-1553 |
issn | 1615-3375 1615-3383 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864550628 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Analysis Analytic functions Applications of Mathematics Computation Computer Science Cryptography Economics Joints Lagrangian functions Lectures Linear and Multilinear Algebras Math Applications in Computer Science Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Matrix Theory Number theory Numerical Analysis |
title | The L-Functions and Modular Forms Database Project |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20L-Functions%20and%20Modular%20Forms%20Database%20Project&rft.jtitle=Foundations%20of%20computational%20mathematics&rft.au=Cremona,%20John&rft.date=2016-12-01&rft.volume=16&rft.issue=6&rft.spage=1541&rft.epage=1553&rft.pages=1541-1553&rft.issn=1615-3375&rft.eissn=1615-3383&rft_id=info:doi/10.1007/s10208-016-9306-z&rft_dat=%3Cgale_proqu%3EA472880036%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063729990&rft_id=info:pmid/&rft_galeid=A472880036&rfr_iscdi=true |