High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites

Nano-Al2O3 reinforcement's capability to simultaneously enhance the room temperature (25°C) strength and ductility of magnesium alloys has effectively been exploited in ingot metallurgy processed AZ31/1.5Al2O3 nanocomposite in this study. Tensile characterization revealed that at high temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2012-12, Vol.558, p.278-284
Hauptverfasser: Hassan, S.F., Paramsothy, M., Patel, F., Gupta, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue
container_start_page 278
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 558
creator Hassan, S.F.
Paramsothy, M.
Patel, F.
Gupta, M.
description Nano-Al2O3 reinforcement's capability to simultaneously enhance the room temperature (25°C) strength and ductility of magnesium alloys has effectively been exploited in ingot metallurgy processed AZ31/1.5Al2O3 nanocomposite in this study. Tensile characterization revealed that at high temperature (150–250°C), instead of strengthening, the thermally stable nano-Al2O3 reinforcement ironically exacerbated the softening of AZ31 alloy. However, an incredible increment in AZ31 alloy (with grain size of ∼2.3μm) ductility (up to 184%) has been achieved in the nanocomposite with increasing temperature due to the incorporation of nano-Al2O3 as reinforcement. Microstructural characterization of the nanocomposite revealed that the dynamic recrystallization process has induced a complete recrystallization in AZ31 alloy matrix at a relatively much lower temperature (150°C) with tremendous grain growth near the fracture surface at higher temperature (250°C). Fractography of the nanocomposite revealed that the room temperature mixed ductile mode fracture behavior of AZ31 alloy transformed to a complete ductile mode at high temperature due to the presence of nano-Al2O3 particulates.
doi_str_mv 10.1016/j.msea.2012.08.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864547562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509312011070</els_id><sourcerecordid>1864547562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-f198ecf246de57a4ae1b9659ee6c70fac96e9acc62405616355826af56981ca53</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMoOK7-AU99Ebx0W_nsBLwMi7rC4l704iXETEUzdHfaVI_gvzfjLB7dS1VR9dQH9TL2ksPAgZs3x2EmDIMALgawA4B4xHbcjrJXTprHbAdO8F6Dk0_ZM6IjAHAFesc-3eTvP7oN5xVr2E4VW7xQnrCrSGtZCLuSuiUspd9P4k62dF5SqREP3f6r5H9LscxrobwhPWdPUpgIX9z7K_bl_bvP1zf97d2Hj9f72z4q4bY-cWcxJqHMAfUYVED-zRntEE0cIYXoDLoQoxHtSMON1NoKE5I2zvIYtLxiry9z11p-npA2P2eKOE1hwXIiz61RWo3aiIdR44RsRtqHUWHlCFYK1VBxQWMtRBWTX2ueQ_3tOfizJP7oz5L4syQerG-StKZX9_MDxTClGpaY6V-nMAqscLJxby8cthf-ylg9xYxL-3muGDd_KPl_a_4A6LugGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1283708324</pqid></control><display><type>article</type><title>High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hassan, S.F. ; Paramsothy, M. ; Patel, F. ; Gupta, M.</creator><creatorcontrib>Hassan, S.F. ; Paramsothy, M. ; Patel, F. ; Gupta, M.</creatorcontrib><description>Nano-Al2O3 reinforcement's capability to simultaneously enhance the room temperature (25°C) strength and ductility of magnesium alloys has effectively been exploited in ingot metallurgy processed AZ31/1.5Al2O3 nanocomposite in this study. Tensile characterization revealed that at high temperature (150–250°C), instead of strengthening, the thermally stable nano-Al2O3 reinforcement ironically exacerbated the softening of AZ31 alloy. However, an incredible increment in AZ31 alloy (with grain size of ∼2.3μm) ductility (up to 184%) has been achieved in the nanocomposite with increasing temperature due to the incorporation of nano-Al2O3 as reinforcement. Microstructural characterization of the nanocomposite revealed that the dynamic recrystallization process has induced a complete recrystallization in AZ31 alloy matrix at a relatively much lower temperature (150°C) with tremendous grain growth near the fracture surface at higher temperature (250°C). Fractography of the nanocomposite revealed that the room temperature mixed ductile mode fracture behavior of AZ31 alloy transformed to a complete ductile mode at high temperature due to the presence of nano-Al2O3 particulates.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2012.08.002</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>AZ31 ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Ductile fracture ; Ductility ; Exact sciences and technology ; High-temperature strength ; Magnesium base alloys ; Materials science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Microstructure ; Nano-Al2O3 ; Nanocomposite ; Nanocomposites ; Nanocrystalline materials ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Physics ; Recrystallization ; Reinforcement ; Softening</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2012-12, Vol.558, p.278-284</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-f198ecf246de57a4ae1b9659ee6c70fac96e9acc62405616355826af56981ca53</citedby><cites>FETCH-LOGICAL-c429t-f198ecf246de57a4ae1b9659ee6c70fac96e9acc62405616355826af56981ca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2012.08.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26408293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassan, S.F.</creatorcontrib><creatorcontrib>Paramsothy, M.</creatorcontrib><creatorcontrib>Patel, F.</creatorcontrib><creatorcontrib>Gupta, M.</creatorcontrib><title>High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Nano-Al2O3 reinforcement's capability to simultaneously enhance the room temperature (25°C) strength and ductility of magnesium alloys has effectively been exploited in ingot metallurgy processed AZ31/1.5Al2O3 nanocomposite in this study. Tensile characterization revealed that at high temperature (150–250°C), instead of strengthening, the thermally stable nano-Al2O3 reinforcement ironically exacerbated the softening of AZ31 alloy. However, an incredible increment in AZ31 alloy (with grain size of ∼2.3μm) ductility (up to 184%) has been achieved in the nanocomposite with increasing temperature due to the incorporation of nano-Al2O3 as reinforcement. Microstructural characterization of the nanocomposite revealed that the dynamic recrystallization process has induced a complete recrystallization in AZ31 alloy matrix at a relatively much lower temperature (150°C) with tremendous grain growth near the fracture surface at higher temperature (250°C). Fractography of the nanocomposite revealed that the room temperature mixed ductile mode fracture behavior of AZ31 alloy transformed to a complete ductile mode at high temperature due to the presence of nano-Al2O3 particulates.</description><subject>AZ31</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Ductile fracture</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>High-temperature strength</subject><subject>Magnesium base alloys</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Microstructure</subject><subject>Nano-Al2O3</subject><subject>Nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanocrystalline materials</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Recrystallization</subject><subject>Reinforcement</subject><subject>Softening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhoMoOK7-AU99Ebx0W_nsBLwMi7rC4l704iXETEUzdHfaVI_gvzfjLB7dS1VR9dQH9TL2ksPAgZs3x2EmDIMALgawA4B4xHbcjrJXTprHbAdO8F6Dk0_ZM6IjAHAFesc-3eTvP7oN5xVr2E4VW7xQnrCrSGtZCLuSuiUspd9P4k62dF5SqREP3f6r5H9LscxrobwhPWdPUpgIX9z7K_bl_bvP1zf97d2Hj9f72z4q4bY-cWcxJqHMAfUYVED-zRntEE0cIYXoDLoQoxHtSMON1NoKE5I2zvIYtLxiry9z11p-npA2P2eKOE1hwXIiz61RWo3aiIdR44RsRtqHUWHlCFYK1VBxQWMtRBWTX2ueQ_3tOfizJP7oz5L4syQerG-StKZX9_MDxTClGpaY6V-nMAqscLJxby8cthf-ylg9xYxL-3muGDd_KPl_a_4A6LugGw</recordid><startdate>20121215</startdate><enddate>20121215</enddate><creator>Hassan, S.F.</creator><creator>Paramsothy, M.</creator><creator>Patel, F.</creator><creator>Gupta, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20121215</creationdate><title>High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites</title><author>Hassan, S.F. ; Paramsothy, M. ; Patel, F. ; Gupta, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-f198ecf246de57a4ae1b9659ee6c70fac96e9acc62405616355826af56981ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>AZ31</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Ductile fracture</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>High-temperature strength</topic><topic>Magnesium base alloys</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Microstructure</topic><topic>Nano-Al2O3</topic><topic>Nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanocrystalline materials</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Recrystallization</topic><topic>Reinforcement</topic><topic>Softening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, S.F.</creatorcontrib><creatorcontrib>Paramsothy, M.</creatorcontrib><creatorcontrib>Patel, F.</creatorcontrib><creatorcontrib>Gupta, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, S.F.</au><au>Paramsothy, M.</au><au>Patel, F.</au><au>Gupta, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2012-12-15</date><risdate>2012</risdate><volume>558</volume><spage>278</spage><epage>284</epage><pages>278-284</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Nano-Al2O3 reinforcement's capability to simultaneously enhance the room temperature (25°C) strength and ductility of magnesium alloys has effectively been exploited in ingot metallurgy processed AZ31/1.5Al2O3 nanocomposite in this study. Tensile characterization revealed that at high temperature (150–250°C), instead of strengthening, the thermally stable nano-Al2O3 reinforcement ironically exacerbated the softening of AZ31 alloy. However, an incredible increment in AZ31 alloy (with grain size of ∼2.3μm) ductility (up to 184%) has been achieved in the nanocomposite with increasing temperature due to the incorporation of nano-Al2O3 as reinforcement. Microstructural characterization of the nanocomposite revealed that the dynamic recrystallization process has induced a complete recrystallization in AZ31 alloy matrix at a relatively much lower temperature (150°C) with tremendous grain growth near the fracture surface at higher temperature (250°C). Fractography of the nanocomposite revealed that the room temperature mixed ductile mode fracture behavior of AZ31 alloy transformed to a complete ductile mode at high temperature due to the presence of nano-Al2O3 particulates.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2012.08.002</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2012-12, Vol.558, p.278-284
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1864547562
source ScienceDirect Journals (5 years ago - present)
subjects AZ31
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Ductile fracture
Ductility
Exact sciences and technology
High-temperature strength
Magnesium base alloys
Materials science
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Microstructure
Nano-Al2O3
Nanocomposite
Nanocomposites
Nanocrystalline materials
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Physics
Recrystallization
Reinforcement
Softening
title High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20tensile%20response%20of%20nano-Al2O3%20reinforced%20AZ31%20nanocomposites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Hassan,%20S.F.&rft.date=2012-12-15&rft.volume=558&rft.spage=278&rft.epage=284&rft.pages=278-284&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2012.08.002&rft_dat=%3Cproquest_cross%3E1864547562%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1283708324&rft_id=info:pmid/&rft_els_id=S0921509312011070&rfr_iscdi=true