Nanoindentation of ultra-hard cBN films: A molecular dynamics study

[Display omitted] •We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN. Cubic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied surface science 2017-01, Vol.392, p.215-224
Hauptverfasser: Huang, Cheng, Peng, Xianghe, Fu, Tao, Zhao, Yinbo, Feng, Chao, Lin, Zijun, Li, Qibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue
container_start_page 215
container_title Applied surface science
container_volume 392
creator Huang, Cheng
Peng, Xianghe
Fu, Tao
Zhao, Yinbo
Feng, Chao
Lin, Zijun
Li, Qibin
description [Display omitted] •We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN. Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.
doi_str_mv 10.1016/j.apsusc.2016.09.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864545914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433216319055</els_id><sourcerecordid>1864545914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKffwEOOXlqTJmkbD8Ic8wXGvOg5pMkTzGibmbTCvr0d9ezp4c__BZ4fQreU5JTQ8n6f60Mak8mLSeVE5oRVZ2hB64plQtT8HC0mQ2acseISXaW0J4QWk7tA653ug-8t9IMefOhxcHhsh6izLx0tNk877HzbpQe8wl1owYytjtgee915k3AaRnu8RhdOtwlu_u4SfT5vPtav2fb95W292maGMTlkja2YrCVoKLikzlSNka4pmS1E42RR2oZWggijSyOI5LYwAHVda-DMWaIJW6K7efcQw_cIaVCdTwbaVvcQxqRoXXLBhaR8ivI5amJIKYJTh-g7HY-KEnVipvZqZqZOzBSRamI21R7nGkxv_HiIKhkPvQHrI5hB2eD_H_gF_qN3nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864545914</pqid></control><display><type>article</type><title>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Cheng ; Peng, Xianghe ; Fu, Tao ; Zhao, Yinbo ; Feng, Chao ; Lin, Zijun ; Li, Qibin</creator><creatorcontrib>Huang, Cheng ; Peng, Xianghe ; Fu, Tao ; Zhao, Yinbo ; Feng, Chao ; Lin, Zijun ; Li, Qibin</creatorcontrib><description>[Display omitted] •We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN. Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2016.09.037</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>cBN film ; Dislocations ; Hardness ; MD simulation ; Molecular dynamics ; Nanoindentation ; Orientation ; Plastic deformation ; Surface energy ; Temperature ; Tersoff potential ; Thermal resistance</subject><ispartof>Applied surface science, 2017-01, Vol.392, p.215-224</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</citedby><cites>FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433216319055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Peng, Xianghe</creatorcontrib><creatorcontrib>Fu, Tao</creatorcontrib><creatorcontrib>Zhao, Yinbo</creatorcontrib><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Lin, Zijun</creatorcontrib><creatorcontrib>Li, Qibin</creatorcontrib><title>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</title><title>Applied surface science</title><description>[Display omitted] •We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN. Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.</description><subject>cBN film</subject><subject>Dislocations</subject><subject>Hardness</subject><subject>MD simulation</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Orientation</subject><subject>Plastic deformation</subject><subject>Surface energy</subject><subject>Temperature</subject><subject>Tersoff potential</subject><subject>Thermal resistance</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4MoOKffwEOOXlqTJmkbD8Ic8wXGvOg5pMkTzGibmbTCvr0d9ezp4c__BZ4fQreU5JTQ8n6f60Mak8mLSeVE5oRVZ2hB64plQtT8HC0mQ2acseISXaW0J4QWk7tA653ug-8t9IMefOhxcHhsh6izLx0tNk877HzbpQe8wl1owYytjtgee915k3AaRnu8RhdOtwlu_u4SfT5vPtav2fb95W292maGMTlkja2YrCVoKLikzlSNka4pmS1E42RR2oZWggijSyOI5LYwAHVda-DMWaIJW6K7efcQw_cIaVCdTwbaVvcQxqRoXXLBhaR8ivI5amJIKYJTh-g7HY-KEnVipvZqZqZOzBSRamI21R7nGkxv_HiIKhkPvQHrI5hB2eD_H_gF_qN3nQ</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Huang, Cheng</creator><creator>Peng, Xianghe</creator><creator>Fu, Tao</creator><creator>Zhao, Yinbo</creator><creator>Feng, Chao</creator><creator>Lin, Zijun</creator><creator>Li, Qibin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170115</creationdate><title>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</title><author>Huang, Cheng ; Peng, Xianghe ; Fu, Tao ; Zhao, Yinbo ; Feng, Chao ; Lin, Zijun ; Li, Qibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cBN film</topic><topic>Dislocations</topic><topic>Hardness</topic><topic>MD simulation</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Orientation</topic><topic>Plastic deformation</topic><topic>Surface energy</topic><topic>Temperature</topic><topic>Tersoff potential</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Peng, Xianghe</creatorcontrib><creatorcontrib>Fu, Tao</creatorcontrib><creatorcontrib>Zhao, Yinbo</creatorcontrib><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Lin, Zijun</creatorcontrib><creatorcontrib>Li, Qibin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cheng</au><au>Peng, Xianghe</au><au>Fu, Tao</au><au>Zhao, Yinbo</au><au>Feng, Chao</au><au>Lin, Zijun</au><au>Li, Qibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</atitle><jtitle>Applied surface science</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>392</volume><spage>215</spage><epage>224</epage><pages>215-224</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted] •We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN. Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2016.09.037</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2017-01, Vol.392, p.215-224
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1864545914
source Elsevier ScienceDirect Journals
subjects cBN film
Dislocations
Hardness
MD simulation
Molecular dynamics
Nanoindentation
Orientation
Plastic deformation
Surface energy
Temperature
Tersoff potential
Thermal resistance
title Nanoindentation of ultra-hard cBN films: A molecular dynamics study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20of%20ultra-hard%20cBN%20films:%20A%20molecular%20dynamics%20study&rft.jtitle=Applied%20surface%20science&rft.au=Huang,%20Cheng&rft.date=2017-01-15&rft.volume=392&rft.spage=215&rft.epage=224&rft.pages=215-224&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2016.09.037&rft_dat=%3Cproquest_cross%3E1864545914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864545914&rft_id=info:pmid/&rft_els_id=S0169433216319055&rfr_iscdi=true