Nanoindentation of ultra-hard cBN films: A molecular dynamics study
[Display omitted] •We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN. Cubic...
Gespeichert in:
Veröffentlicht in: | Applied surface science 2017-01, Vol.392, p.215-224 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | |
container_start_page | 215 |
container_title | Applied surface science |
container_volume | 392 |
creator | Huang, Cheng Peng, Xianghe Fu, Tao Zhao, Yinbo Feng, Chao Lin, Zijun Li, Qibin |
description | [Display omitted]
•We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN.
Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature. |
doi_str_mv | 10.1016/j.apsusc.2016.09.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864545914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433216319055</els_id><sourcerecordid>1864545914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKffwEOOXlqTJmkbD8Ic8wXGvOg5pMkTzGibmbTCvr0d9ezp4c__BZ4fQreU5JTQ8n6f60Mak8mLSeVE5oRVZ2hB64plQtT8HC0mQ2acseISXaW0J4QWk7tA653ug-8t9IMefOhxcHhsh6izLx0tNk877HzbpQe8wl1owYytjtgee915k3AaRnu8RhdOtwlu_u4SfT5vPtav2fb95W292maGMTlkja2YrCVoKLikzlSNka4pmS1E42RR2oZWggijSyOI5LYwAHVda-DMWaIJW6K7efcQw_cIaVCdTwbaVvcQxqRoXXLBhaR8ivI5amJIKYJTh-g7HY-KEnVipvZqZqZOzBSRamI21R7nGkxv_HiIKhkPvQHrI5hB2eD_H_gF_qN3nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864545914</pqid></control><display><type>article</type><title>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Cheng ; Peng, Xianghe ; Fu, Tao ; Zhao, Yinbo ; Feng, Chao ; Lin, Zijun ; Li, Qibin</creator><creatorcontrib>Huang, Cheng ; Peng, Xianghe ; Fu, Tao ; Zhao, Yinbo ; Feng, Chao ; Lin, Zijun ; Li, Qibin</creatorcontrib><description>[Display omitted]
•We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN.
Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2016.09.037</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>cBN film ; Dislocations ; Hardness ; MD simulation ; Molecular dynamics ; Nanoindentation ; Orientation ; Plastic deformation ; Surface energy ; Temperature ; Tersoff potential ; Thermal resistance</subject><ispartof>Applied surface science, 2017-01, Vol.392, p.215-224</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</citedby><cites>FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0169433216319055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Peng, Xianghe</creatorcontrib><creatorcontrib>Fu, Tao</creatorcontrib><creatorcontrib>Zhao, Yinbo</creatorcontrib><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Lin, Zijun</creatorcontrib><creatorcontrib>Li, Qibin</creatorcontrib><title>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</title><title>Applied surface science</title><description>[Display omitted]
•We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN.
Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.</description><subject>cBN film</subject><subject>Dislocations</subject><subject>Hardness</subject><subject>MD simulation</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Orientation</subject><subject>Plastic deformation</subject><subject>Surface energy</subject><subject>Temperature</subject><subject>Tersoff potential</subject><subject>Thermal resistance</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4MoOKffwEOOXlqTJmkbD8Ic8wXGvOg5pMkTzGibmbTCvr0d9ezp4c__BZ4fQreU5JTQ8n6f60Mak8mLSeVE5oRVZ2hB64plQtT8HC0mQ2acseISXaW0J4QWk7tA653ug-8t9IMefOhxcHhsh6izLx0tNk877HzbpQe8wl1owYytjtgee915k3AaRnu8RhdOtwlu_u4SfT5vPtav2fb95W292maGMTlkja2YrCVoKLikzlSNka4pmS1E42RR2oZWggijSyOI5LYwAHVda-DMWaIJW6K7efcQw_cIaVCdTwbaVvcQxqRoXXLBhaR8ivI5amJIKYJTh-g7HY-KEnVipvZqZqZOzBSRamI21R7nGkxv_HiIKhkPvQHrI5hB2eD_H_gF_qN3nQ</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Huang, Cheng</creator><creator>Peng, Xianghe</creator><creator>Fu, Tao</creator><creator>Zhao, Yinbo</creator><creator>Feng, Chao</creator><creator>Lin, Zijun</creator><creator>Li, Qibin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170115</creationdate><title>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</title><author>Huang, Cheng ; Peng, Xianghe ; Fu, Tao ; Zhao, Yinbo ; Feng, Chao ; Lin, Zijun ; Li, Qibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-bd73989eae2491fc7bc9fb63d25bf926db17505ca6c5094d2cee888ae43fd0a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>cBN film</topic><topic>Dislocations</topic><topic>Hardness</topic><topic>MD simulation</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Orientation</topic><topic>Plastic deformation</topic><topic>Surface energy</topic><topic>Temperature</topic><topic>Tersoff potential</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Peng, Xianghe</creatorcontrib><creatorcontrib>Fu, Tao</creatorcontrib><creatorcontrib>Zhao, Yinbo</creatorcontrib><creatorcontrib>Feng, Chao</creatorcontrib><creatorcontrib>Lin, Zijun</creatorcontrib><creatorcontrib>Li, Qibin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cheng</au><au>Peng, Xianghe</au><au>Fu, Tao</au><au>Zhao, Yinbo</au><au>Feng, Chao</au><au>Lin, Zijun</au><au>Li, Qibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoindentation of ultra-hard cBN films: A molecular dynamics study</atitle><jtitle>Applied surface science</jtitle><date>2017-01-15</date><risdate>2017</risdate><volume>392</volume><spage>215</spage><epage>224</epage><pages>215-224</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>[Display omitted]
•We optimize tersoff potential to better simulate the BN.•We perform respectively the nanoindentations on the (001) and (111) surface of cBN.•The main slip system of cBN under nanoindentation is {111} .•Temperature has a significant effect on the mechanical properties of cBN.
Cubic Boron nitride (cBN) exhibits excellent mechanical properties including high strength, hardness and thermal resistance, etc. We optimized the parameters in the Tersoff interatomic potential for cBN based on its cohesive energy, lattice parameter, elastic constants, surface energy and stacking fault energy. We performed with molecular dynamics (MD) simulations the nanoindentation on the (001) and (111) surface of monocrystalline cBN thin films to study the deformation mechanisms and the effects of temperature and substrate orientation. It was found that during the indentation plastic deformation is mainly stress-induced slips of dislocations along {111} orientations. It was also found that the hardness of cBN depends strongly on temperature, and the capability of plastic deformation is enhanced with the increase of temperature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2016.09.037</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2017-01, Vol.392, p.215-224 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864545914 |
source | Elsevier ScienceDirect Journals |
subjects | cBN film Dislocations Hardness MD simulation Molecular dynamics Nanoindentation Orientation Plastic deformation Surface energy Temperature Tersoff potential Thermal resistance |
title | Nanoindentation of ultra-hard cBN films: A molecular dynamics study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoindentation%20of%20ultra-hard%20cBN%20films:%20A%20molecular%20dynamics%20study&rft.jtitle=Applied%20surface%20science&rft.au=Huang,%20Cheng&rft.date=2017-01-15&rft.volume=392&rft.spage=215&rft.epage=224&rft.pages=215-224&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2016.09.037&rft_dat=%3Cproquest_cross%3E1864545914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864545914&rft_id=info:pmid/&rft_els_id=S0169433216319055&rfr_iscdi=true |