Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations
We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these i...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2017-03, Vol.313, p.515-535 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 535 |
---|---|
container_issue | |
container_start_page | 515 |
container_title | Journal of computational and applied mathematics |
container_volume | 313 |
creator | Haqiri, Tayyebe Poloni, Federico |
description | We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples. |
doi_str_mv | 10.1016/j.cam.2016.09.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864545339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716304411</els_id><sourcerecordid>1864545339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8siTYiePEYkKIL6kICcHAZDn2pVyVxq3tIMGvJ6XMTHfD-7y6ewg55yznjMvLVW7NOi-mNWcqZwU_IDPe1Crjdd0ckhkr6zpjoqiPyUmMK8aYVFzMyPsTpA_vIu18oJ8QsENwNCbTYo_fOCxp9P2Y0A-RJk-tHxIOox9jlnAN1PRLaINBS1_QWpOQwnY0v_FTctSZPsLZ35yTt7vb15uHbPF8_3hzvcisKFXKZMWNc5I749pWtZ1qTdNUouFSlVCoWlailcIUJWugEbLgIJUEY61yhQGryjm52Pdugt-OEJNeY7TQ92aA6U7NGykqUZXlLsr3URt8jAE6vQm4NuFLc6Z3GvVKTxr1TqNmSk8aJ-Zqz8D0wydC0NEiDBYcBrBJO4__0D88MXyP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864545339</pqid></control><display><type>article</type><title>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Haqiri, Tayyebe ; Poloni, Federico</creator><creatorcontrib>Haqiri, Tayyebe ; Poloni, Federico</creatorcontrib><description>We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.09.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebra ; Algebraic Riccati equation ; Applications of mathematics ; Benchmarking ; Interval arithmetic ; Krawczyk’s method ; Mathematical analysis ; Mathematical models ; Riccati equation ; Stabilizing solution ; State of the art ; Verified computation</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.313, p.515-535</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</citedby><cites>FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</cites><orcidid>0000-0003-2291-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.09.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Haqiri, Tayyebe</creatorcontrib><creatorcontrib>Poloni, Federico</creatorcontrib><title>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</title><title>Journal of computational and applied mathematics</title><description>We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.</description><subject>Algebra</subject><subject>Algebraic Riccati equation</subject><subject>Applications of mathematics</subject><subject>Benchmarking</subject><subject>Interval arithmetic</subject><subject>Krawczyk’s method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Riccati equation</subject><subject>Stabilizing solution</subject><subject>State of the art</subject><subject>Verified computation</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8siTYiePEYkKIL6kICcHAZDn2pVyVxq3tIMGvJ6XMTHfD-7y6ewg55yznjMvLVW7NOi-mNWcqZwU_IDPe1Crjdd0ckhkr6zpjoqiPyUmMK8aYVFzMyPsTpA_vIu18oJ8QsENwNCbTYo_fOCxp9P2Y0A-RJk-tHxIOox9jlnAN1PRLaINBS1_QWpOQwnY0v_FTctSZPsLZ35yTt7vb15uHbPF8_3hzvcisKFXKZMWNc5I749pWtZ1qTdNUouFSlVCoWlailcIUJWugEbLgIJUEY61yhQGryjm52Pdugt-OEJNeY7TQ92aA6U7NGykqUZXlLsr3URt8jAE6vQm4NuFLc6Z3GvVKTxr1TqNmSk8aJ-Zqz8D0wydC0NEiDBYcBrBJO4__0D88MXyP</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Haqiri, Tayyebe</creator><creator>Poloni, Federico</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2291-990X</orcidid></search><sort><creationdate>20170315</creationdate><title>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</title><author>Haqiri, Tayyebe ; Poloni, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algebraic Riccati equation</topic><topic>Applications of mathematics</topic><topic>Benchmarking</topic><topic>Interval arithmetic</topic><topic>Krawczyk’s method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Riccati equation</topic><topic>Stabilizing solution</topic><topic>State of the art</topic><topic>Verified computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haqiri, Tayyebe</creatorcontrib><creatorcontrib>Poloni, Federico</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haqiri, Tayyebe</au><au>Poloni, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>313</volume><spage>515</spage><epage>535</epage><pages>515-535</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.09.021</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2291-990X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2017-03, Vol.313, p.515-535 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864545339 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Algebra Algebraic Riccati equation Applications of mathematics Benchmarking Interval arithmetic Krawczyk’s method Mathematical analysis Mathematical models Riccati equation Stabilizing solution State of the art Verified computation |
title | Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20verified%20stabilizing%20solutions%20to%20continuous-time%20algebraic%20Riccati%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Haqiri,%20Tayyebe&rft.date=2017-03-15&rft.volume=313&rft.spage=515&rft.epage=535&rft.pages=515-535&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.09.021&rft_dat=%3Cproquest_cross%3E1864545339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864545339&rft_id=info:pmid/&rft_els_id=S0377042716304411&rfr_iscdi=true |