Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations

We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-03, Vol.313, p.515-535
Hauptverfasser: Haqiri, Tayyebe, Poloni, Federico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue
container_start_page 515
container_title Journal of computational and applied mathematics
container_volume 313
creator Haqiri, Tayyebe
Poloni, Federico
description We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.
doi_str_mv 10.1016/j.cam.2016.09.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864545339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716304411</els_id><sourcerecordid>1864545339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8siTYiePEYkKIL6kICcHAZDn2pVyVxq3tIMGvJ6XMTHfD-7y6ewg55yznjMvLVW7NOi-mNWcqZwU_IDPe1Crjdd0ckhkr6zpjoqiPyUmMK8aYVFzMyPsTpA_vIu18oJ8QsENwNCbTYo_fOCxp9P2Y0A-RJk-tHxIOox9jlnAN1PRLaINBS1_QWpOQwnY0v_FTctSZPsLZ35yTt7vb15uHbPF8_3hzvcisKFXKZMWNc5I749pWtZ1qTdNUouFSlVCoWlailcIUJWugEbLgIJUEY61yhQGryjm52Pdugt-OEJNeY7TQ92aA6U7NGykqUZXlLsr3URt8jAE6vQm4NuFLc6Z3GvVKTxr1TqNmSk8aJ-Zqz8D0wydC0NEiDBYcBrBJO4__0D88MXyP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864545339</pqid></control><display><type>article</type><title>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Haqiri, Tayyebe ; Poloni, Federico</creator><creatorcontrib>Haqiri, Tayyebe ; Poloni, Federico</creatorcontrib><description>We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.09.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebra ; Algebraic Riccati equation ; Applications of mathematics ; Benchmarking ; Interval arithmetic ; Krawczyk’s method ; Mathematical analysis ; Mathematical models ; Riccati equation ; Stabilizing solution ; State of the art ; Verified computation</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.313, p.515-535</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</citedby><cites>FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</cites><orcidid>0000-0003-2291-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.09.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Haqiri, Tayyebe</creatorcontrib><creatorcontrib>Poloni, Federico</creatorcontrib><title>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</title><title>Journal of computational and applied mathematics</title><description>We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.</description><subject>Algebra</subject><subject>Algebraic Riccati equation</subject><subject>Applications of mathematics</subject><subject>Benchmarking</subject><subject>Interval arithmetic</subject><subject>Krawczyk’s method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Riccati equation</subject><subject>Stabilizing solution</subject><subject>State of the art</subject><subject>Verified computation</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8siTYiePEYkKIL6kICcHAZDn2pVyVxq3tIMGvJ6XMTHfD-7y6ewg55yznjMvLVW7NOi-mNWcqZwU_IDPe1Crjdd0ckhkr6zpjoqiPyUmMK8aYVFzMyPsTpA_vIu18oJ8QsENwNCbTYo_fOCxp9P2Y0A-RJk-tHxIOox9jlnAN1PRLaINBS1_QWpOQwnY0v_FTctSZPsLZ35yTt7vb15uHbPF8_3hzvcisKFXKZMWNc5I749pWtZ1qTdNUouFSlVCoWlailcIUJWugEbLgIJUEY61yhQGryjm52Pdugt-OEJNeY7TQ92aA6U7NGykqUZXlLsr3URt8jAE6vQm4NuFLc6Z3GvVKTxr1TqNmSk8aJ-Zqz8D0wydC0NEiDBYcBrBJO4__0D88MXyP</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Haqiri, Tayyebe</creator><creator>Poloni, Federico</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2291-990X</orcidid></search><sort><creationdate>20170315</creationdate><title>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</title><author>Haqiri, Tayyebe ; Poloni, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-651add61dadbb9bf9ba885481693e297654b64a2308e84621e696eacc9d2aec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Algebraic Riccati equation</topic><topic>Applications of mathematics</topic><topic>Benchmarking</topic><topic>Interval arithmetic</topic><topic>Krawczyk’s method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Riccati equation</topic><topic>Stabilizing solution</topic><topic>State of the art</topic><topic>Verified computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haqiri, Tayyebe</creatorcontrib><creatorcontrib>Poloni, Federico</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haqiri, Tayyebe</au><au>Poloni, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-15</date><risdate>2017</risdate><volume>313</volume><spage>515</spage><epage>535</epage><pages>515-535</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>We describe a procedure based on the Krawczyk method to compute a verified enclosure for the stabilizing solution of a continuous-time algebraic Riccati equation A∗X+XA+Q=XGX building on the work of Hashemi (2012) and adding several modifications to the Krawczyk procedure. We show that after these improvements the Krawczyk method reaches results comparable with the current state-of-the-art algorithm (Miyajima, 2015), and surpasses it in some examples. Moreover, we introduce a new direct method for verification which has a cubic complexity in term of the dimension of X, employing a fixed-point formulation of the equation inspired by the ADI procedure. The resulting methods are tested on a number of standard benchmark examples.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.09.021</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2291-990X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2017-03, Vol.313, p.515-535
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1864545339
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algebra
Algebraic Riccati equation
Applications of mathematics
Benchmarking
Interval arithmetic
Krawczyk’s method
Mathematical analysis
Mathematical models
Riccati equation
Stabilizing solution
State of the art
Verified computation
title Methods for verified stabilizing solutions to continuous-time algebraic Riccati equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20verified%20stabilizing%20solutions%20to%20continuous-time%20algebraic%20Riccati%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Haqiri,%20Tayyebe&rft.date=2017-03-15&rft.volume=313&rft.spage=515&rft.epage=535&rft.pages=515-535&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.09.021&rft_dat=%3Cproquest_cross%3E1864545339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864545339&rft_id=info:pmid/&rft_els_id=S0377042716304411&rfr_iscdi=true