Aerogels based on carbon nanomaterials

Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2016-10, Vol.51 (20), p.9157-9189
Hauptverfasser: Araby, Sherif, Qiu, Aidong, Wang, Ruoyu, Zhao, Zhiheng, Wang, Chun-Hui, Ma, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9189
container_issue 20
container_start_page 9157
container_title Journal of materials science
container_volume 51
creator Araby, Sherif
Qiu, Aidong
Wang, Ruoyu
Zhao, Zhiheng
Wang, Chun-Hui
Ma, Jun
description Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is currently a lack of understanding of how processing factors would determine the structure–property relationships important to the wide applications of these aerogels. The present work thoroughly examines the preparation, structure, properties and applications of three types of aerogels. Firstly, we briefly review carbon aerogels prepared from the sol–gel of certain organic monomers, where the synthesis and processing conditions determine the structural features, such as pore volume and pore size distribution. Secondly, carbon nanotube (CNT) aerogels made by three methods are discussed to identify their relative advantageous over carbon aerogels in terms of electrical conductivity and mechanical robustness. Finally, graphene aerogels are reviewed, which can be prepared by four routes—template-directed CVD, in situ reduction assembly, template-directing assembly and cross-linking. In comparison with CNT aerogels, graphene aerogels can be made at lower manufacturing costs to achieve appropriate properties meeting various needs. The major applications of these aerogels include flexible energy storage devices and environmental applications, both of which exploit the key characteristics of carbon aerogels such as low density and high porosity, deformability, mechanical robustness, electrical conductivity, adsorption and electro-sorption. Challenges, research opportunities and future applications are also discussed.
doi_str_mv 10.1007/s10853-016-0141-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864545273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470514781</galeid><sourcerecordid>A470514781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-1643c81d2a0304407821e99e19db78c3e3ae10ed3d8cf27612839ce70f89ac7b3</originalsourceid><addsrcrecordid>eNp1kdtKAzEQhoMoWA8P4F1BEL3YOpNkN9nLUjwUCoKH65BmZ8vKdlOTLahPb8oKoiBD-CF83zDwM3aGMEEAdR0RdC4ywCI9idnnHhthrkQmNYh9NgLgPOOywEN2FOMrAOSK44hdTCn4FbVxvLSRqrHvxs6GZYrOdn5tewqNbeMJO6hT0Ol3HrOX25vn2X22eLibz6aLzMm87DMspHAaK25BgJSgNEcqS8KyWirtBAlLCFSJSruaqwK5FqUjBbUurVNLccwuh72b4N-2FHuzbqKjtrUd-W00qAuZy5wrkdDzP-ir34YuXWc4z8uCF4XYUZOBWtmWTNPVvg_Wpalo3TjfUd2k_6lUkKNUGpNw9UtITE_v_cpuYzTzp8ffLA6sCz7GQLXZhGZtw4dBMLtazFCLSbWYXS3mMzl8cGJiuxWFn7P_l74AV76MMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259626633</pqid></control><display><type>article</type><title>Aerogels based on carbon nanomaterials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Araby, Sherif ; Qiu, Aidong ; Wang, Ruoyu ; Zhao, Zhiheng ; Wang, Chun-Hui ; Ma, Jun</creator><creatorcontrib>Araby, Sherif ; Qiu, Aidong ; Wang, Ruoyu ; Zhao, Zhiheng ; Wang, Chun-Hui ; Ma, Jun</creatorcontrib><description>Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is currently a lack of understanding of how processing factors would determine the structure–property relationships important to the wide applications of these aerogels. The present work thoroughly examines the preparation, structure, properties and applications of three types of aerogels. Firstly, we briefly review carbon aerogels prepared from the sol–gel of certain organic monomers, where the synthesis and processing conditions determine the structural features, such as pore volume and pore size distribution. Secondly, carbon nanotube (CNT) aerogels made by three methods are discussed to identify their relative advantageous over carbon aerogels in terms of electrical conductivity and mechanical robustness. Finally, graphene aerogels are reviewed, which can be prepared by four routes—template-directed CVD, in situ reduction assembly, template-directing assembly and cross-linking. In comparison with CNT aerogels, graphene aerogels can be made at lower manufacturing costs to achieve appropriate properties meeting various needs. The major applications of these aerogels include flexible energy storage devices and environmental applications, both of which exploit the key characteristics of carbon aerogels such as low density and high porosity, deformability, mechanical robustness, electrical conductivity, adsorption and electro-sorption. Challenges, research opportunities and future applications are also discussed.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-016-0141-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerogels ; Assembly ; Bulk density ; Carbon ; Carbon nanotubes ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Computer storage devices ; Crosslinking ; Crystallography and Scattering Methods ; Deformation ; Dielectric properties ; Dielectric strength ; Electric properties ; Electrical conductivity ; Electrical properties ; Electrical resistivity ; Energy storage ; Formability ; Graphene ; Identification methods ; Materials Science ; Nanomaterials ; Polymer Sciences ; Pore size distribution ; Porosity ; Production costs ; Review ; Robustness ; Sol-gel processes ; Solid Mechanics</subject><ispartof>Journal of materials science, 2016-10, Vol.51 (20), p.9157-9189</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-1643c81d2a0304407821e99e19db78c3e3ae10ed3d8cf27612839ce70f89ac7b3</citedby><cites>FETCH-LOGICAL-c459t-1643c81d2a0304407821e99e19db78c3e3ae10ed3d8cf27612839ce70f89ac7b3</cites><orcidid>0000-0002-6676-7779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-016-0141-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-016-0141-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Araby, Sherif</creatorcontrib><creatorcontrib>Qiu, Aidong</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Zhao, Zhiheng</creatorcontrib><creatorcontrib>Wang, Chun-Hui</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><title>Aerogels based on carbon nanomaterials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is currently a lack of understanding of how processing factors would determine the structure–property relationships important to the wide applications of these aerogels. The present work thoroughly examines the preparation, structure, properties and applications of three types of aerogels. Firstly, we briefly review carbon aerogels prepared from the sol–gel of certain organic monomers, where the synthesis and processing conditions determine the structural features, such as pore volume and pore size distribution. Secondly, carbon nanotube (CNT) aerogels made by three methods are discussed to identify their relative advantageous over carbon aerogels in terms of electrical conductivity and mechanical robustness. Finally, graphene aerogels are reviewed, which can be prepared by four routes—template-directed CVD, in situ reduction assembly, template-directing assembly and cross-linking. In comparison with CNT aerogels, graphene aerogels can be made at lower manufacturing costs to achieve appropriate properties meeting various needs. The major applications of these aerogels include flexible energy storage devices and environmental applications, both of which exploit the key characteristics of carbon aerogels such as low density and high porosity, deformability, mechanical robustness, electrical conductivity, adsorption and electro-sorption. Challenges, research opportunities and future applications are also discussed.</description><subject>Aerogels</subject><subject>Assembly</subject><subject>Bulk density</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computer storage devices</subject><subject>Crosslinking</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dielectric properties</subject><subject>Dielectric strength</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Formability</subject><subject>Graphene</subject><subject>Identification methods</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Polymer Sciences</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>Production costs</subject><subject>Review</subject><subject>Robustness</subject><subject>Sol-gel processes</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kdtKAzEQhoMoWA8P4F1BEL3YOpNkN9nLUjwUCoKH65BmZ8vKdlOTLahPb8oKoiBD-CF83zDwM3aGMEEAdR0RdC4ywCI9idnnHhthrkQmNYh9NgLgPOOywEN2FOMrAOSK44hdTCn4FbVxvLSRqrHvxs6GZYrOdn5tewqNbeMJO6hT0Ol3HrOX25vn2X22eLibz6aLzMm87DMspHAaK25BgJSgNEcqS8KyWirtBAlLCFSJSruaqwK5FqUjBbUurVNLccwuh72b4N-2FHuzbqKjtrUd-W00qAuZy5wrkdDzP-ir34YuXWc4z8uCF4XYUZOBWtmWTNPVvg_Wpalo3TjfUd2k_6lUkKNUGpNw9UtITE_v_cpuYzTzp8ffLA6sCz7GQLXZhGZtw4dBMLtazFCLSbWYXS3mMzl8cGJiuxWFn7P_l74AV76MMA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Araby, Sherif</creator><creator>Qiu, Aidong</creator><creator>Wang, Ruoyu</creator><creator>Zhao, Zhiheng</creator><creator>Wang, Chun-Hui</creator><creator>Ma, Jun</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6676-7779</orcidid></search><sort><creationdate>20161001</creationdate><title>Aerogels based on carbon nanomaterials</title><author>Araby, Sherif ; Qiu, Aidong ; Wang, Ruoyu ; Zhao, Zhiheng ; Wang, Chun-Hui ; Ma, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-1643c81d2a0304407821e99e19db78c3e3ae10ed3d8cf27612839ce70f89ac7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerogels</topic><topic>Assembly</topic><topic>Bulk density</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computer storage devices</topic><topic>Crosslinking</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dielectric properties</topic><topic>Dielectric strength</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Formability</topic><topic>Graphene</topic><topic>Identification methods</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Polymer Sciences</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>Production costs</topic><topic>Review</topic><topic>Robustness</topic><topic>Sol-gel processes</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araby, Sherif</creatorcontrib><creatorcontrib>Qiu, Aidong</creatorcontrib><creatorcontrib>Wang, Ruoyu</creatorcontrib><creatorcontrib>Zhao, Zhiheng</creatorcontrib><creatorcontrib>Wang, Chun-Hui</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araby, Sherif</au><au>Qiu, Aidong</au><au>Wang, Ruoyu</au><au>Zhao, Zhiheng</au><au>Wang, Chun-Hui</au><au>Ma, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerogels based on carbon nanomaterials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>51</volume><issue>20</issue><spage>9157</spage><epage>9189</epage><pages>9157-9189</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is currently a lack of understanding of how processing factors would determine the structure–property relationships important to the wide applications of these aerogels. The present work thoroughly examines the preparation, structure, properties and applications of three types of aerogels. Firstly, we briefly review carbon aerogels prepared from the sol–gel of certain organic monomers, where the synthesis and processing conditions determine the structural features, such as pore volume and pore size distribution. Secondly, carbon nanotube (CNT) aerogels made by three methods are discussed to identify their relative advantageous over carbon aerogels in terms of electrical conductivity and mechanical robustness. Finally, graphene aerogels are reviewed, which can be prepared by four routes—template-directed CVD, in situ reduction assembly, template-directing assembly and cross-linking. In comparison with CNT aerogels, graphene aerogels can be made at lower manufacturing costs to achieve appropriate properties meeting various needs. The major applications of these aerogels include flexible energy storage devices and environmental applications, both of which exploit the key characteristics of carbon aerogels such as low density and high porosity, deformability, mechanical robustness, electrical conductivity, adsorption and electro-sorption. Challenges, research opportunities and future applications are also discussed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-016-0141-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-6676-7779</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2016-10, Vol.51 (20), p.9157-9189
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1864545273
source SpringerLink Journals - AutoHoldings
subjects Aerogels
Assembly
Bulk density
Carbon
Carbon nanotubes
Characterization and Evaluation of Materials
Chemical vapor deposition
Chemistry and Materials Science
Classical Mechanics
Computer storage devices
Crosslinking
Crystallography and Scattering Methods
Deformation
Dielectric properties
Dielectric strength
Electric properties
Electrical conductivity
Electrical properties
Electrical resistivity
Energy storage
Formability
Graphene
Identification methods
Materials Science
Nanomaterials
Polymer Sciences
Pore size distribution
Porosity
Production costs
Review
Robustness
Sol-gel processes
Solid Mechanics
title Aerogels based on carbon nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerogels%20based%20on%20carbon%20nanomaterials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Araby,%20Sherif&rft.date=2016-10-01&rft.volume=51&rft.issue=20&rft.spage=9157&rft.epage=9189&rft.pages=9157-9189&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-016-0141-z&rft_dat=%3Cgale_proqu%3EA470514781%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259626633&rft_id=info:pmid/&rft_galeid=A470514781&rfr_iscdi=true