Improving the twilight model for polar cap absorption nowcasts

During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2016-11, Vol.14 (11), p.950-972
Hauptverfasser: Rogers, N. C., Kero, A., Honary, F., Verronen, P. T., Warrington, E. M., Danskin, D. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 972
container_issue 11
container_start_page 950
container_title Space Weather
container_volume 14
creator Rogers, N. C.
Kero, A.
Honary, F.
Verronen, P. T.
Warrington, E. M.
Danskin, D. W.
description During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real‐time measurements of the integrated proton flux‐energy spectrum, J. However, empirical models in common use cannot account for regional and day‐to‐day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A/J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error‐function transition over a range of solar‐zenith angles (χl 
doi_str_mv 10.1002/2016SW001527
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864542550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1908920946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4396-44a4e20d09c1020d480aedfa1da64214d975b88a1eeb20ae5cb94388f4199d23</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRsFZv_oAFL16is1_J7kWQ0mqh4KGFHpdNsmlTkmzcTS39967UQ_Hk6R2Yh2HeB6F7Ak8EgD5TIOlyDUAEzS7QiAhOk4wpuDybr9FNCLtIc0H5CL3M2967r7rb4GFr8XCom3qzHXDrStvgynncu8Z4XJgemzw43w-163DnDoUJQ7hFV5Vpgr37zTFazaaryXuy-HibT14XScGZShPODbcUSlAFgZhcgrFlZUhpUk4JL1UmcikNsTancSWKXHEmZcWJUiVlY_R4Oht__dzbMOi2DoVtGtNZtw-ayJTHgkLAP9BIZRmjMqIPf9Cd2_su9tBEgVQUFE8jRU9UVGOPuvd1a_xRE9A_zvW5c71cTykwmbJveuJz3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1908920946</pqid></control><display><type>article</type><title>Improving the twilight model for polar cap absorption nowcasts</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rogers, N. C. ; Kero, A. ; Honary, F. ; Verronen, P. T. ; Warrington, E. M. ; Danskin, D. W.</creator><creatorcontrib>Rogers, N. C. ; Kero, A. ; Honary, F. ; Verronen, P. T. ; Warrington, E. M. ; Danskin, D. W.</creatorcontrib><description>During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real‐time measurements of the integrated proton flux‐energy spectrum, J. However, empirical models in common use cannot account for regional and day‐to‐day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A/J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error‐function transition over a range of solar‐zenith angles (χl &lt; χ &lt; χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth‐shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998–2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age‐weighted measurements from 25 riometers. The technique reduces model bias, and root‐mean‐square errors are reduced by up to 30% compared with a model employing no riometer data assimilation. Plain Language Summary The active sun occasionally ejects streams of very high‐energy protons towards the Earth. These are guided by the geomagnetic field into the polar regions where they ionise the upper atmosphere (ionosphere). The ionised plasma strongly absorbs shortwave radio signals used for long‐distance communications and this can persist for several days. This study shows how real‐time measurements from multiple ground sensors (as well as satellites) are needed to improve the accuracy of radio absorption nowcasts. In particular, it examines and models the rapid changes in ionospheric absorption at twilight, the rate of which can vary greatly, both regionally and from day to day. Key Points Parameters of an empirical PCA model are optimized by using riometers A linear twilight transition model provides a better fit than “Earth‐shadow” methods Postsunrise delays in absorption increases are large and highly variable</description><identifier>ISSN: 1542-7390</identifier><identifier>ISSN: 1539-4964</identifier><identifier>EISSN: 1542-7390</identifier><identifier>DOI: 10.1002/2016SW001527</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Absorption ; Atmosphere ; Atmospheric models ; Communication satellites ; Communications ; Correlation ; Cosmic noise ; Data assimilation ; Data collection ; Energy ; Fluctuations ; Geomagnetic field ; Geomagnetism ; HF radio propagation ; Ionosphere ; Ionospheric absorption ; Latitude ; Mathematical models ; Night ; Noise ; Noise prediction ; Optimization ; Parameters ; Polar cap absorption ; Polar caps ; Polar mesosphere ; Polar regions ; Proton flux ; Radio attenuation ; Radio waves ; Rigidity ; Riometers ; Satellites ; Sensitivity ; Sensors ; Simulation ; Solar protons ; Streams ; Sun ; Twilight ; Upper atmosphere ; Wave attenuation ; Zenith</subject><ispartof>Space Weather, 2016-11, Vol.14 (11), p.950-972</ispartof><rights>2016. The Authors.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4396-44a4e20d09c1020d480aedfa1da64214d975b88a1eeb20ae5cb94388f4199d23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016SW001527$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016SW001527$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Rogers, N. C.</creatorcontrib><creatorcontrib>Kero, A.</creatorcontrib><creatorcontrib>Honary, F.</creatorcontrib><creatorcontrib>Verronen, P. T.</creatorcontrib><creatorcontrib>Warrington, E. M.</creatorcontrib><creatorcontrib>Danskin, D. W.</creatorcontrib><title>Improving the twilight model for polar cap absorption nowcasts</title><title>Space Weather</title><description>During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real‐time measurements of the integrated proton flux‐energy spectrum, J. However, empirical models in common use cannot account for regional and day‐to‐day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A/J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error‐function transition over a range of solar‐zenith angles (χl &lt; χ &lt; χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth‐shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998–2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age‐weighted measurements from 25 riometers. The technique reduces model bias, and root‐mean‐square errors are reduced by up to 30% compared with a model employing no riometer data assimilation. Plain Language Summary The active sun occasionally ejects streams of very high‐energy protons towards the Earth. These are guided by the geomagnetic field into the polar regions where they ionise the upper atmosphere (ionosphere). The ionised plasma strongly absorbs shortwave radio signals used for long‐distance communications and this can persist for several days. This study shows how real‐time measurements from multiple ground sensors (as well as satellites) are needed to improve the accuracy of radio absorption nowcasts. In particular, it examines and models the rapid changes in ionospheric absorption at twilight, the rate of which can vary greatly, both regionally and from day to day. Key Points Parameters of an empirical PCA model are optimized by using riometers A linear twilight transition model provides a better fit than “Earth‐shadow” methods Postsunrise delays in absorption increases are large and highly variable</description><subject>Absorption</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Communication satellites</subject><subject>Communications</subject><subject>Correlation</subject><subject>Cosmic noise</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Energy</subject><subject>Fluctuations</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>HF radio propagation</subject><subject>Ionosphere</subject><subject>Ionospheric absorption</subject><subject>Latitude</subject><subject>Mathematical models</subject><subject>Night</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Polar cap absorption</subject><subject>Polar caps</subject><subject>Polar mesosphere</subject><subject>Polar regions</subject><subject>Proton flux</subject><subject>Radio attenuation</subject><subject>Radio waves</subject><subject>Rigidity</subject><subject>Riometers</subject><subject>Satellites</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Solar protons</subject><subject>Streams</subject><subject>Sun</subject><subject>Twilight</subject><subject>Upper atmosphere</subject><subject>Wave attenuation</subject><subject>Zenith</subject><issn>1542-7390</issn><issn>1539-4964</issn><issn>1542-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkE1Lw0AQhhdRsFZv_oAFL16is1_J7kWQ0mqh4KGFHpdNsmlTkmzcTS39967UQ_Hk6R2Yh2HeB6F7Ak8EgD5TIOlyDUAEzS7QiAhOk4wpuDybr9FNCLtIc0H5CL3M2967r7rb4GFr8XCom3qzHXDrStvgynncu8Z4XJgemzw43w-163DnDoUJQ7hFV5Vpgr37zTFazaaryXuy-HibT14XScGZShPODbcUSlAFgZhcgrFlZUhpUk4JL1UmcikNsTancSWKXHEmZcWJUiVlY_R4Oht__dzbMOi2DoVtGtNZtw-ayJTHgkLAP9BIZRmjMqIPf9Cd2_su9tBEgVQUFE8jRU9UVGOPuvd1a_xRE9A_zvW5c71cTykwmbJveuJz3Q</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Rogers, N. C.</creator><creator>Kero, A.</creator><creator>Honary, F.</creator><creator>Verronen, P. T.</creator><creator>Warrington, E. M.</creator><creator>Danskin, D. W.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201611</creationdate><title>Improving the twilight model for polar cap absorption nowcasts</title><author>Rogers, N. C. ; Kero, A. ; Honary, F. ; Verronen, P. T. ; Warrington, E. M. ; Danskin, D. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4396-44a4e20d09c1020d480aedfa1da64214d975b88a1eeb20ae5cb94388f4199d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Communication satellites</topic><topic>Communications</topic><topic>Correlation</topic><topic>Cosmic noise</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Energy</topic><topic>Fluctuations</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>HF radio propagation</topic><topic>Ionosphere</topic><topic>Ionospheric absorption</topic><topic>Latitude</topic><topic>Mathematical models</topic><topic>Night</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Polar cap absorption</topic><topic>Polar caps</topic><topic>Polar mesosphere</topic><topic>Polar regions</topic><topic>Proton flux</topic><topic>Radio attenuation</topic><topic>Radio waves</topic><topic>Rigidity</topic><topic>Riometers</topic><topic>Satellites</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Solar protons</topic><topic>Streams</topic><topic>Sun</topic><topic>Twilight</topic><topic>Upper atmosphere</topic><topic>Wave attenuation</topic><topic>Zenith</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, N. C.</creatorcontrib><creatorcontrib>Kero, A.</creatorcontrib><creatorcontrib>Honary, F.</creatorcontrib><creatorcontrib>Verronen, P. T.</creatorcontrib><creatorcontrib>Warrington, E. M.</creatorcontrib><creatorcontrib>Danskin, D. W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Space Weather</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogers, N. C.</au><au>Kero, A.</au><au>Honary, F.</au><au>Verronen, P. T.</au><au>Warrington, E. M.</au><au>Danskin, D. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the twilight model for polar cap absorption nowcasts</atitle><jtitle>Space Weather</jtitle><date>2016-11</date><risdate>2016</risdate><volume>14</volume><issue>11</issue><spage>950</spage><epage>972</epage><pages>950-972</pages><issn>1542-7390</issn><issn>1539-4964</issn><eissn>1542-7390</eissn><abstract>During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real‐time measurements of the integrated proton flux‐energy spectrum, J. However, empirical models in common use cannot account for regional and day‐to‐day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A/J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error‐function transition over a range of solar‐zenith angles (χl &lt; χ &lt; χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth‐shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998–2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age‐weighted measurements from 25 riometers. The technique reduces model bias, and root‐mean‐square errors are reduced by up to 30% compared with a model employing no riometer data assimilation. Plain Language Summary The active sun occasionally ejects streams of very high‐energy protons towards the Earth. These are guided by the geomagnetic field into the polar regions where they ionise the upper atmosphere (ionosphere). The ionised plasma strongly absorbs shortwave radio signals used for long‐distance communications and this can persist for several days. This study shows how real‐time measurements from multiple ground sensors (as well as satellites) are needed to improve the accuracy of radio absorption nowcasts. In particular, it examines and models the rapid changes in ionospheric absorption at twilight, the rate of which can vary greatly, both regionally and from day to day. Key Points Parameters of an empirical PCA model are optimized by using riometers A linear twilight transition model provides a better fit than “Earth‐shadow” methods Postsunrise delays in absorption increases are large and highly variable</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2016SW001527</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1542-7390
ispartof Space Weather, 2016-11, Vol.14 (11), p.950-972
issn 1542-7390
1539-4964
1542-7390
language eng
recordid cdi_proquest_miscellaneous_1864542550
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Atmosphere
Atmospheric models
Communication satellites
Communications
Correlation
Cosmic noise
Data assimilation
Data collection
Energy
Fluctuations
Geomagnetic field
Geomagnetism
HF radio propagation
Ionosphere
Ionospheric absorption
Latitude
Mathematical models
Night
Noise
Noise prediction
Optimization
Parameters
Polar cap absorption
Polar caps
Polar mesosphere
Polar regions
Proton flux
Radio attenuation
Radio waves
Rigidity
Riometers
Satellites
Sensitivity
Sensors
Simulation
Solar protons
Streams
Sun
Twilight
Upper atmosphere
Wave attenuation
Zenith
title Improving the twilight model for polar cap absorption nowcasts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A07%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20twilight%20model%20for%20polar%20cap%20absorption%20nowcasts&rft.jtitle=Space%20Weather&rft.au=Rogers,%20N.%20C.&rft.date=2016-11&rft.volume=14&rft.issue=11&rft.spage=950&rft.epage=972&rft.pages=950-972&rft.issn=1542-7390&rft.eissn=1542-7390&rft_id=info:doi/10.1002/2016SW001527&rft_dat=%3Cproquest_wiley%3E1908920946%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1908920946&rft_id=info:pmid/&rfr_iscdi=true