Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration
The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman- α line (121.6 nm) and requires a 0.1 % polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuu...
Gespeichert in:
Veröffentlicht in: | Solar physics 2016-12, Vol.291 (12), p.3831-3867 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3867 |
---|---|
container_issue | 12 |
container_start_page | 3831 |
container_title | Solar physics |
container_volume | 291 |
creator | Giono, G. Ishikawa, R. Narukage, N. Kano, R. Katsukawa, Y. Kubo, M. Ishikawa, S. Bando, T. Hara, H. Suematsu, Y. Winebarger, A. Kobayashi, K. Auchère, F. Trujillo Bueno, J. |
description | The
Chromospheric Lyman-Alpha SpectroPolarimeter
(CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman-
α
line (121.6 nm) and requires a
0.1
%
polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuum UV (VUV) spectral range.
A unique polarization calibration experiment was conducted under vacuum conditions to estimate the response matrix of the instrument. For this purpose, a custom-made light source was designed to inject Lyman-
α
light with a known linear polarization state into the spectropolarimeter. Two methods were employed to change the orientation of the linear polarization input: one by rotating the light-source itself (direct method), the other by rotating a half-waveplate located after the light-source’s polarizers (waveplate method). The spurious polarization, scale factor, and azimuth error terms of the response matrix were successfully estimated from the polarization calibration measurements. However, it was found that the direct method could not provide an accuracy better than
0.1
%
on the spurious polarization terms, whereas their required tolerance was
<
0.017
%
. On the other hand, the waveplate method determined these terms with only a
∼
0.04
%
accuracy due to residual cross-talk between polarization and intensity. Nevertheless, the polarization calibration confirmed the very low spurious polarization level of the instrument, which will also be confirmed with the flight data. The resulting response matrix deviated from an ideal one, and possible causes of the deviation are discussed by considering the polarization properties of the optical components. |
doi_str_mv | 10.1007/s11207-016-0950-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864541928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864541928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-b4553cafc5cde6cadf8cdf6d79bcdc39619ac40e15c0c8b003c7fa769c8cbf903</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYMouK79AL4FROjL1GQymWR8K0vVwoKL_YNvIXMn6aTMTqZJtnT9OH5Ss44PtVDwKTfwO4d7z0HoHSUnlBDxMVJaElEQWhek4aR4eIEWlAuWf-zHS7QghMnDLF-jNzHeEnJQ8QX6tfGDDu6nTs6PeKUH14Z59han3uBVH_zWx6k3wQFe77d6LE6Hqdf4YjKQgp8NtiaZgK0PWOO8Ev6A_zG-MGN0yd27tMdu_GN8fXWNv-vxxpzgjQ4Jn3_Cm2AKO7ibPj3e5C16ZfUQzdHfd4muPp9drr4W629fzlen6wKqpkxFW3HOQFvg0JkadGcldLbuRNNCB6ypaaOhIoZyICDbHAgIq0XdgITWNoQt0fHsOwV_tzMxqa2LYIZBj8bvoqKyrnhFm1L-B8qJEJLnjZbo_RP01u_CmA_JVFWVgjHJMkVnCoKPMRirppypDntFiTpUpeaCVS5YHQpWD1lTzpqY2ZxjeOT8rOg3hKqrDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844273383</pqid></control><display><type>article</type><title>Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration</title><source>Springer Nature - Complete Springer Journals</source><creator>Giono, G. ; Ishikawa, R. ; Narukage, N. ; Kano, R. ; Katsukawa, Y. ; Kubo, M. ; Ishikawa, S. ; Bando, T. ; Hara, H. ; Suematsu, Y. ; Winebarger, A. ; Kobayashi, K. ; Auchère, F. ; Trujillo Bueno, J.</creator><creatorcontrib>Giono, G. ; Ishikawa, R. ; Narukage, N. ; Kano, R. ; Katsukawa, Y. ; Kubo, M. ; Ishikawa, S. ; Bando, T. ; Hara, H. ; Suematsu, Y. ; Winebarger, A. ; Kobayashi, K. ; Auchère, F. ; Trujillo Bueno, J.</creatorcontrib><description>The
Chromospheric Lyman-Alpha SpectroPolarimeter
(CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman-
α
line (121.6 nm) and requires a
0.1
%
polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuum UV (VUV) spectral range.
A unique polarization calibration experiment was conducted under vacuum conditions to estimate the response matrix of the instrument. For this purpose, a custom-made light source was designed to inject Lyman-
α
light with a known linear polarization state into the spectropolarimeter. Two methods were employed to change the orientation of the linear polarization input: one by rotating the light-source itself (direct method), the other by rotating a half-waveplate located after the light-source’s polarizers (waveplate method). The spurious polarization, scale factor, and azimuth error terms of the response matrix were successfully estimated from the polarization calibration measurements. However, it was found that the direct method could not provide an accuracy better than
0.1
%
on the spurious polarization terms, whereas their required tolerance was
<
0.017
%
. On the other hand, the waveplate method determined these terms with only a
∼
0.04
%
accuracy due to residual cross-talk between polarization and intensity. Nevertheless, the polarization calibration confirmed the very low spurious polarization level of the instrument, which will also be confirmed with the flight data. The resulting response matrix deviated from an ideal one, and possible causes of the deviation are discussed by considering the polarization properties of the optical components.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-016-0950-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Astrophysics and Astroparticles ; Atmospheric Sciences ; Calibration ; Chromosomes ; Deviation ; Hydrogen ; Light sources ; Linear polarization ; Physics ; Physics and Astronomy ; Polarization ; Sensitivity ; Sensitivity analysis ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spectrum analysis</subject><ispartof>Solar physics, 2016-12, Vol.291 (12), p.3831-3867</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Solar Physics is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-b4553cafc5cde6cadf8cdf6d79bcdc39619ac40e15c0c8b003c7fa769c8cbf903</citedby><cites>FETCH-LOGICAL-c492t-b4553cafc5cde6cadf8cdf6d79bcdc39619ac40e15c0c8b003c7fa769c8cbf903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-016-0950-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-016-0950-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Giono, G.</creatorcontrib><creatorcontrib>Ishikawa, R.</creatorcontrib><creatorcontrib>Narukage, N.</creatorcontrib><creatorcontrib>Kano, R.</creatorcontrib><creatorcontrib>Katsukawa, Y.</creatorcontrib><creatorcontrib>Kubo, M.</creatorcontrib><creatorcontrib>Ishikawa, S.</creatorcontrib><creatorcontrib>Bando, T.</creatorcontrib><creatorcontrib>Hara, H.</creatorcontrib><creatorcontrib>Suematsu, Y.</creatorcontrib><creatorcontrib>Winebarger, A.</creatorcontrib><creatorcontrib>Kobayashi, K.</creatorcontrib><creatorcontrib>Auchère, F.</creatorcontrib><creatorcontrib>Trujillo Bueno, J.</creatorcontrib><title>Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>The
Chromospheric Lyman-Alpha SpectroPolarimeter
(CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman-
α
line (121.6 nm) and requires a
0.1
%
polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuum UV (VUV) spectral range.
A unique polarization calibration experiment was conducted under vacuum conditions to estimate the response matrix of the instrument. For this purpose, a custom-made light source was designed to inject Lyman-
α
light with a known linear polarization state into the spectropolarimeter. Two methods were employed to change the orientation of the linear polarization input: one by rotating the light-source itself (direct method), the other by rotating a half-waveplate located after the light-source’s polarizers (waveplate method). The spurious polarization, scale factor, and azimuth error terms of the response matrix were successfully estimated from the polarization calibration measurements. However, it was found that the direct method could not provide an accuracy better than
0.1
%
on the spurious polarization terms, whereas their required tolerance was
<
0.017
%
. On the other hand, the waveplate method determined these terms with only a
∼
0.04
%
accuracy due to residual cross-talk between polarization and intensity. Nevertheless, the polarization calibration confirmed the very low spurious polarization level of the instrument, which will also be confirmed with the flight data. The resulting response matrix deviated from an ideal one, and possible causes of the deviation are discussed by considering the polarization properties of the optical components.</description><subject>Accuracy</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Calibration</subject><subject>Chromosomes</subject><subject>Deviation</subject><subject>Hydrogen</subject><subject>Light sources</subject><subject>Linear polarization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spectrum analysis</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9rFDEUxYMouK79AL4FROjL1GQymWR8K0vVwoKL_YNvIXMn6aTMTqZJtnT9OH5Ss44PtVDwKTfwO4d7z0HoHSUnlBDxMVJaElEQWhek4aR4eIEWlAuWf-zHS7QghMnDLF-jNzHeEnJQ8QX6tfGDDu6nTs6PeKUH14Z59han3uBVH_zWx6k3wQFe77d6LE6Hqdf4YjKQgp8NtiaZgK0PWOO8Ev6A_zG-MGN0yd27tMdu_GN8fXWNv-vxxpzgjQ4Jn3_Cm2AKO7ibPj3e5C16ZfUQzdHfd4muPp9drr4W629fzlen6wKqpkxFW3HOQFvg0JkadGcldLbuRNNCB6ypaaOhIoZyICDbHAgIq0XdgITWNoQt0fHsOwV_tzMxqa2LYIZBj8bvoqKyrnhFm1L-B8qJEJLnjZbo_RP01u_CmA_JVFWVgjHJMkVnCoKPMRirppypDntFiTpUpeaCVS5YHQpWD1lTzpqY2ZxjeOT8rOg3hKqrDQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Giono, G.</creator><creator>Ishikawa, R.</creator><creator>Narukage, N.</creator><creator>Kano, R.</creator><creator>Katsukawa, Y.</creator><creator>Kubo, M.</creator><creator>Ishikawa, S.</creator><creator>Bando, T.</creator><creator>Hara, H.</creator><creator>Suematsu, Y.</creator><creator>Winebarger, A.</creator><creator>Kobayashi, K.</creator><creator>Auchère, F.</creator><creator>Trujillo Bueno, J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration</title><author>Giono, G. ; Ishikawa, R. ; Narukage, N. ; Kano, R. ; Katsukawa, Y. ; Kubo, M. ; Ishikawa, S. ; Bando, T. ; Hara, H. ; Suematsu, Y. ; Winebarger, A. ; Kobayashi, K. ; Auchère, F. ; Trujillo Bueno, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-b4553cafc5cde6cadf8cdf6d79bcdc39619ac40e15c0c8b003c7fa769c8cbf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Calibration</topic><topic>Chromosomes</topic><topic>Deviation</topic><topic>Hydrogen</topic><topic>Light sources</topic><topic>Linear polarization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giono, G.</creatorcontrib><creatorcontrib>Ishikawa, R.</creatorcontrib><creatorcontrib>Narukage, N.</creatorcontrib><creatorcontrib>Kano, R.</creatorcontrib><creatorcontrib>Katsukawa, Y.</creatorcontrib><creatorcontrib>Kubo, M.</creatorcontrib><creatorcontrib>Ishikawa, S.</creatorcontrib><creatorcontrib>Bando, T.</creatorcontrib><creatorcontrib>Hara, H.</creatorcontrib><creatorcontrib>Suematsu, Y.</creatorcontrib><creatorcontrib>Winebarger, A.</creatorcontrib><creatorcontrib>Kobayashi, K.</creatorcontrib><creatorcontrib>Auchère, F.</creatorcontrib><creatorcontrib>Trujillo Bueno, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giono, G.</au><au>Ishikawa, R.</au><au>Narukage, N.</au><au>Kano, R.</au><au>Katsukawa, Y.</au><au>Kubo, M.</au><au>Ishikawa, S.</au><au>Bando, T.</au><au>Hara, H.</au><au>Suematsu, Y.</au><au>Winebarger, A.</au><au>Kobayashi, K.</au><au>Auchère, F.</au><au>Trujillo Bueno, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>291</volume><issue>12</issue><spage>3831</spage><epage>3867</epage><pages>3831-3867</pages><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>The
Chromospheric Lyman-Alpha SpectroPolarimeter
(CLASP) is a sounding rocket experiment designed to measure for the first time the linear polarization of the hydrogen Lyman-
α
line (121.6 nm) and requires a
0.1
%
polarization sensitivity, which is unprecedented for a spectropolarimeter in the vacuum UV (VUV) spectral range.
A unique polarization calibration experiment was conducted under vacuum conditions to estimate the response matrix of the instrument. For this purpose, a custom-made light source was designed to inject Lyman-
α
light with a known linear polarization state into the spectropolarimeter. Two methods were employed to change the orientation of the linear polarization input: one by rotating the light-source itself (direct method), the other by rotating a half-waveplate located after the light-source’s polarizers (waveplate method). The spurious polarization, scale factor, and azimuth error terms of the response matrix were successfully estimated from the polarization calibration measurements. However, it was found that the direct method could not provide an accuracy better than
0.1
%
on the spurious polarization terms, whereas their required tolerance was
<
0.017
%
. On the other hand, the waveplate method determined these terms with only a
∼
0.04
%
accuracy due to residual cross-talk between polarization and intensity. Nevertheless, the polarization calibration confirmed the very low spurious polarization level of the instrument, which will also be confirmed with the flight data. The resulting response matrix deviated from an ideal one, and possible causes of the deviation are discussed by considering the polarization properties of the optical components.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-016-0950-x</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2016-12, Vol.291 (12), p.3831-3867 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_miscellaneous_1864541928 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Astrophysics and Astroparticles Atmospheric Sciences Calibration Chromosomes Deviation Hydrogen Light sources Linear polarization Physics Physics and Astronomy Polarization Sensitivity Sensitivity analysis Solar physics Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Spectrum analysis |
title | Polarization Calibration of the Chromospheric Lyman-Alpha SpectroPolarimeter for a 0.1 % Polarization Sensitivity in the VUV Range. Part I: Pre-flight Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarization%20Calibration%20of%20the%20Chromospheric%20Lyman-Alpha%20SpectroPolarimeter%20for%20a%200.1%20%25%20Polarization%20Sensitivity%20in%20the%20VUV%20Range.%20Part%20I:%20Pre-flight%20Calibration&rft.jtitle=Solar%20physics&rft.au=Giono,%20G.&rft.date=2016-12-01&rft.volume=291&rft.issue=12&rft.spage=3831&rft.epage=3867&rft.pages=3831-3867&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-016-0950-x&rft_dat=%3Cproquest_cross%3E1864541928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844273383&rft_id=info:pmid/&rfr_iscdi=true |