Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern

To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2016-12, Vol.91, p.156-167
Hauptverfasser: Chen, S., McGregor, O.P.L., Harper, L.T., Endruweit, A., Warrior, N.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue
container_start_page 156
container_title Composites. Part A, Applied science and manufacturing
container_volume 91
creator Chen, S.
McGregor, O.P.L.
Harper, L.T.
Endruweit, A.
Warrior, N.A.
description To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.
doi_str_mv 10.1016/j.compositesa.2016.09.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864540423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X16303219</els_id><sourcerecordid>1864540423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</originalsourceid><addsrcrecordid>eNqNUEtPxCAYJEYT19X_gDcvrVDog6NZn8kmXjTxJKH0w2XTlgqsj38vzXrw6GkmX2Ym3wxC55TklNDqcptrN0wu2AhB5UU65UTkCQ7QgjZ1k5UNJ4eJs1JkDStfjtFJCFtCCGOCLtDrNRjQERvnBxWtG3G383Z8w5OH-TZTZ7DCrc3Ul1U9Ht2YaW-HCRvVeqvxp42bJJhs3yuPQ7RRb_CkYgQ_nqIjo_oAZ7-4RM-3N0-r-2z9ePewulpnmpMyZqZhhlW0qE1pivSbYJyyRjBRc0EqJnQBpqMtEKVZC4KwlpQ8GXhraqYIZ0t0sc-dvHvfQYhysEFD-mgEtwuSNhUvOeEFS1Kxl2rvQkgt5ZTaKP8tKZHzpnIr_2wq500lETJB8q72XkhdPix4GbSFUUNnfVpRds7-I-UH0jSGOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864540423</pqid></control><display><type>article</type><title>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</title><source>ScienceDirect</source><creator>Chen, S. ; McGregor, O.P.L. ; Harper, L.T. ; Endruweit, A. ; Warrior, N.A.</creator><creatorcontrib>Chen, S. ; McGregor, O.P.L. ; Harper, L.T. ; Endruweit, A. ; Warrior, N.A.</creatorcontrib><description>To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2016.09.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Fabrics/textiles ; B. Defect ; C. Finite element analysis (FEA) ; Computer simulation ; Constitutive relationships ; Correlation ; Defects ; E. Forming ; E. Preform ; Mathematical models ; Shear ; Stitches ; Wrinkling</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2016-12, Vol.91, p.156-167</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</citedby><cites>FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2016.09.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chen, S.</creatorcontrib><creatorcontrib>McGregor, O.P.L.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><title>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</title><title>Composites. Part A, Applied science and manufacturing</title><description>To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.</description><subject>A. Fabrics/textiles</subject><subject>B. Defect</subject><subject>C. Finite element analysis (FEA)</subject><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Correlation</subject><subject>Defects</subject><subject>E. Forming</subject><subject>E. Preform</subject><subject>Mathematical models</subject><subject>Shear</subject><subject>Stitches</subject><subject>Wrinkling</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUEtPxCAYJEYT19X_gDcvrVDog6NZn8kmXjTxJKH0w2XTlgqsj38vzXrw6GkmX2Ym3wxC55TklNDqcptrN0wu2AhB5UU65UTkCQ7QgjZ1k5UNJ4eJs1JkDStfjtFJCFtCCGOCLtDrNRjQERvnBxWtG3G383Z8w5OH-TZTZ7DCrc3Ul1U9Ht2YaW-HCRvVeqvxp42bJJhs3yuPQ7RRb_CkYgQ_nqIjo_oAZ7-4RM-3N0-r-2z9ePewulpnmpMyZqZhhlW0qE1pivSbYJyyRjBRc0EqJnQBpqMtEKVZC4KwlpQ8GXhraqYIZ0t0sc-dvHvfQYhysEFD-mgEtwuSNhUvOeEFS1Kxl2rvQkgt5ZTaKP8tKZHzpnIr_2wq500lETJB8q72XkhdPix4GbSFUUNnfVpRds7-I-UH0jSGOA</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Chen, S.</creator><creator>McGregor, O.P.L.</creator><creator>Harper, L.T.</creator><creator>Endruweit, A.</creator><creator>Warrior, N.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201612</creationdate><title>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</title><author>Chen, S. ; McGregor, O.P.L. ; Harper, L.T. ; Endruweit, A. ; Warrior, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A. Fabrics/textiles</topic><topic>B. Defect</topic><topic>C. Finite element analysis (FEA)</topic><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Correlation</topic><topic>Defects</topic><topic>E. Forming</topic><topic>E. Preform</topic><topic>Mathematical models</topic><topic>Shear</topic><topic>Stitches</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, S.</creatorcontrib><creatorcontrib>McGregor, O.P.L.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, S.</au><au>McGregor, O.P.L.</au><au>Harper, L.T.</au><au>Endruweit, A.</au><au>Warrior, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2016-12</date><risdate>2016</risdate><volume>91</volume><spage>156</spage><epage>167</epage><pages>156-167</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2016.09.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2016-12, Vol.91, p.156-167
issn 1359-835X
1878-5840
language eng
recordid cdi_proquest_miscellaneous_1864540423
source ScienceDirect
subjects A. Fabrics/textiles
B. Defect
C. Finite element analysis (FEA)
Computer simulation
Constitutive relationships
Correlation
Defects
E. Forming
E. Preform
Mathematical models
Shear
Stitches
Wrinkling
title Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20formation%20during%20preforming%20of%20a%20bi-axial%20non-crimp%20fabric%20with%20a%20pillar%20stitch%20pattern&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Chen,%20S.&rft.date=2016-12&rft.volume=91&rft.spage=156&rft.epage=167&rft.pages=156-167&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2016.09.016&rft_dat=%3Cproquest_cross%3E1864540423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864540423&rft_id=info:pmid/&rft_els_id=S1359835X16303219&rfr_iscdi=true