Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern
To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2016-12, Vol.91, p.156-167 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 167 |
---|---|
container_issue | |
container_start_page | 156 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 91 |
creator | Chen, S. McGregor, O.P.L. Harper, L.T. Endruweit, A. Warrior, N.A. |
description | To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments. |
doi_str_mv | 10.1016/j.compositesa.2016.09.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864540423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X16303219</els_id><sourcerecordid>1864540423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</originalsourceid><addsrcrecordid>eNqNUEtPxCAYJEYT19X_gDcvrVDog6NZn8kmXjTxJKH0w2XTlgqsj38vzXrw6GkmX2Ym3wxC55TklNDqcptrN0wu2AhB5UU65UTkCQ7QgjZ1k5UNJ4eJs1JkDStfjtFJCFtCCGOCLtDrNRjQERvnBxWtG3G383Z8w5OH-TZTZ7DCrc3Ul1U9Ht2YaW-HCRvVeqvxp42bJJhs3yuPQ7RRb_CkYgQ_nqIjo_oAZ7-4RM-3N0-r-2z9ePewulpnmpMyZqZhhlW0qE1pivSbYJyyRjBRc0EqJnQBpqMtEKVZC4KwlpQ8GXhraqYIZ0t0sc-dvHvfQYhysEFD-mgEtwuSNhUvOeEFS1Kxl2rvQkgt5ZTaKP8tKZHzpnIr_2wq500lETJB8q72XkhdPix4GbSFUUNnfVpRds7-I-UH0jSGOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864540423</pqid></control><display><type>article</type><title>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</title><source>ScienceDirect</source><creator>Chen, S. ; McGregor, O.P.L. ; Harper, L.T. ; Endruweit, A. ; Warrior, N.A.</creator><creatorcontrib>Chen, S. ; McGregor, O.P.L. ; Harper, L.T. ; Endruweit, A. ; Warrior, N.A.</creatorcontrib><description>To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2016.09.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Fabrics/textiles ; B. Defect ; C. Finite element analysis (FEA) ; Computer simulation ; Constitutive relationships ; Correlation ; Defects ; E. Forming ; E. Preform ; Mathematical models ; Shear ; Stitches ; Wrinkling</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2016-12, Vol.91, p.156-167</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</citedby><cites>FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2016.09.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Chen, S.</creatorcontrib><creatorcontrib>McGregor, O.P.L.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><title>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</title><title>Composites. Part A, Applied science and manufacturing</title><description>To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.</description><subject>A. Fabrics/textiles</subject><subject>B. Defect</subject><subject>C. Finite element analysis (FEA)</subject><subject>Computer simulation</subject><subject>Constitutive relationships</subject><subject>Correlation</subject><subject>Defects</subject><subject>E. Forming</subject><subject>E. Preform</subject><subject>Mathematical models</subject><subject>Shear</subject><subject>Stitches</subject><subject>Wrinkling</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUEtPxCAYJEYT19X_gDcvrVDog6NZn8kmXjTxJKH0w2XTlgqsj38vzXrw6GkmX2Ym3wxC55TklNDqcptrN0wu2AhB5UU65UTkCQ7QgjZ1k5UNJ4eJs1JkDStfjtFJCFtCCGOCLtDrNRjQERvnBxWtG3G383Z8w5OH-TZTZ7DCrc3Ul1U9Ht2YaW-HCRvVeqvxp42bJJhs3yuPQ7RRb_CkYgQ_nqIjo_oAZ7-4RM-3N0-r-2z9ePewulpnmpMyZqZhhlW0qE1pivSbYJyyRjBRc0EqJnQBpqMtEKVZC4KwlpQ8GXhraqYIZ0t0sc-dvHvfQYhysEFD-mgEtwuSNhUvOeEFS1Kxl2rvQkgt5ZTaKP8tKZHzpnIr_2wq500lETJB8q72XkhdPix4GbSFUUNnfVpRds7-I-UH0jSGOA</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Chen, S.</creator><creator>McGregor, O.P.L.</creator><creator>Harper, L.T.</creator><creator>Endruweit, A.</creator><creator>Warrior, N.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201612</creationdate><title>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</title><author>Chen, S. ; McGregor, O.P.L. ; Harper, L.T. ; Endruweit, A. ; Warrior, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-f83f36127f5f20009341389397490639c2efd1be0ac3be903b0543614bf73a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A. Fabrics/textiles</topic><topic>B. Defect</topic><topic>C. Finite element analysis (FEA)</topic><topic>Computer simulation</topic><topic>Constitutive relationships</topic><topic>Correlation</topic><topic>Defects</topic><topic>E. Forming</topic><topic>E. Preform</topic><topic>Mathematical models</topic><topic>Shear</topic><topic>Stitches</topic><topic>Wrinkling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, S.</creatorcontrib><creatorcontrib>McGregor, O.P.L.</creatorcontrib><creatorcontrib>Harper, L.T.</creatorcontrib><creatorcontrib>Endruweit, A.</creatorcontrib><creatorcontrib>Warrior, N.A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, S.</au><au>McGregor, O.P.L.</au><au>Harper, L.T.</au><au>Endruweit, A.</au><au>Warrior, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2016-12</date><risdate>2016</risdate><volume>91</volume><spage>156</spage><epage>167</epage><pages>156-167</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>To capture the asymmetrical shear behaviour of a bi-axial NCF with a pillar stitch, a non-orthogonal constitutive model was developed and implemented in finite element forming simulations. Preforming experiments indicate that the local distribution of defects is significantly different on both sides of each bi-axial ply, with two different defect mechanisms observed. Correlation with simulation results indicates that one defect type is caused by excessive shear, inducing out-of-plane wrinkling in regions of positive shear (macro-scale wrinkling). The other defect type is caused by fibre compression, inducing in-plane wrinkling in regions of negative shear (meso-scale wrinkling). Local distributions of shear angle and wrinkling strain were used to determine the wrinkling mode and to confirm the corresponding defect mechanism. Results indicate that simulations based on the advanced constitutive model can predict local shear angles within ±5° of experimental values and that predicted wrinkling positions and defect types correlate well with the experiments.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2016.09.016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2016-12, Vol.91, p.156-167 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864540423 |
source | ScienceDirect |
subjects | A. Fabrics/textiles B. Defect C. Finite element analysis (FEA) Computer simulation Constitutive relationships Correlation Defects E. Forming E. Preform Mathematical models Shear Stitches Wrinkling |
title | Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20formation%20during%20preforming%20of%20a%20bi-axial%20non-crimp%20fabric%20with%20a%20pillar%20stitch%20pattern&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Chen,%20S.&rft.date=2016-12&rft.volume=91&rft.spage=156&rft.epage=167&rft.pages=156-167&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2016.09.016&rft_dat=%3Cproquest_cross%3E1864540423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864540423&rft_id=info:pmid/&rft_els_id=S1359835X16303219&rfr_iscdi=true |