Mass spring parameters identification for knitted fabric simulation based on FAST testing and particle swarm optimization

In computer graphics, Mass-Spring model is used to obtain fast and visual results in physical simulations. A disadvantage of the method is to obtain accurate result because of the difficulty to define parameters of a Mass-Spring Model. Different works and results have been carried out to define mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fibers and polymers 2016-10, Vol.17 (10), p.1715-1725
Hauptverfasser: Mozafary, Vajiha, Payvandy, Pedram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1725
container_issue 10
container_start_page 1715
container_title Fibers and polymers
container_volume 17
creator Mozafary, Vajiha
Payvandy, Pedram
description In computer graphics, Mass-Spring model is used to obtain fast and visual results in physical simulations. A disadvantage of the method is to obtain accurate result because of the difficulty to define parameters of a Mass-Spring Model. Different works and results have been carried out to define model parameters. In this field, researchers have used optimization technique based on meta-heuristic method or applied fabric properties such as FAST and Kawabata test to determine model parameters. So far no research has been done using combination of two mentioned methods to recover mass spring parameters. Therefore; the purpose of this paper is to determine parameters of mass spring model applying Particle Swarm Optimization techniques and FAST test. For this point, the effective properties on fabric drape including stretch, shear, and bending properties are measured using the Fast System. Then, in order to reduce error value between simulated and actual fabric behavior, parameters of the mass spring model such as super elasticity rate, mesh topology and natural length of spring are optimized by applying the Particle Swarm Optimization (PSO). The PSO parameters are specified by using Taguchi Design of Experiment. Finally, fabrics drape are simulated in other situations and compared with its actual result to validate the model parameters. Results show that the optimized model is able to predict the drape behavior of knitted fabric with error value of 2.9 percent as compared with the real result.
doi_str_mv 10.1007/s12221-016-6567-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864539192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4242247301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-f83059b13f0f08198cf48fd7652f2c5054ecd3cc35453f50d14f1a7c7cdd503c3</originalsourceid><addsrcrecordid>eNp1kc1KAzEUhYMoWKsP4C7gxs1objKZzCxLsSpUXFjXIc0kkjp_JimiT2_GcSGCq1xyv3O4nIPQOZArIERcB6CUQkagyApeiKw8QDMoBc8I4fQwzZRWWQWVOEYnIewIKYAKNkMfDyoEHAbvuhc8KK9aE40P2NWmi846raLrO2x7j187F6OpsVVb7zQOrt0303arQvpPw2rxtMHRhDi6qa4eHaPTjcHhXfkW90N0rfv8Vp2iI6uaYM5-3jl6Xt1slnfZ-vH2frlYZzoHHjNbMsKrLTBLLCmhKrXNS1uLglNLNSc8N7pmWjOec2Y5qSG3oIQWuq45YZrN0eXkO_j-bZ9uk60L2jSN6ky_DxLKIilTNDShF3_QXb_3XbouUUwQoJUoEwUTpX0fgjdWpvRa5T8kEDmWIacyZCpDjmXIUUMnzZS08b-c_xV9Ab_ojhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837012978</pqid></control><display><type>article</type><title>Mass spring parameters identification for knitted fabric simulation based on FAST testing and particle swarm optimization</title><source>SpringerNature Journals</source><creator>Mozafary, Vajiha ; Payvandy, Pedram</creator><creatorcontrib>Mozafary, Vajiha ; Payvandy, Pedram</creatorcontrib><description>In computer graphics, Mass-Spring model is used to obtain fast and visual results in physical simulations. A disadvantage of the method is to obtain accurate result because of the difficulty to define parameters of a Mass-Spring Model. Different works and results have been carried out to define model parameters. In this field, researchers have used optimization technique based on meta-heuristic method or applied fabric properties such as FAST and Kawabata test to determine model parameters. So far no research has been done using combination of two mentioned methods to recover mass spring parameters. Therefore; the purpose of this paper is to determine parameters of mass spring model applying Particle Swarm Optimization techniques and FAST test. For this point, the effective properties on fabric drape including stretch, shear, and bending properties are measured using the Fast System. Then, in order to reduce error value between simulated and actual fabric behavior, parameters of the mass spring model such as super elasticity rate, mesh topology and natural length of spring are optimized by applying the Particle Swarm Optimization (PSO). The PSO parameters are specified by using Taguchi Design of Experiment. Finally, fabrics drape are simulated in other situations and compared with its actual result to validate the model parameters. Results show that the optimized model is able to predict the drape behavior of knitted fabric with error value of 2.9 percent as compared with the real result.</description><identifier>ISSN: 1229-9197</identifier><identifier>EISSN: 1875-0052</identifier><identifier>DOI: 10.1007/s12221-016-6567-8</identifier><language>eng</language><publisher>Seoul: The Korean Fiber Society</publisher><subject>Chemistry ; Chemistry and Materials Science ; Computer simulation ; Drape ; Errors ; Fabrics ; Mathematical models ; Parameters ; Polymer Sciences ; Polysulfone resins ; Swarm intelligence</subject><ispartof>Fibers and polymers, 2016-10, Vol.17 (10), p.1715-1725</ispartof><rights>The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-f83059b13f0f08198cf48fd7652f2c5054ecd3cc35453f50d14f1a7c7cdd503c3</citedby><cites>FETCH-LOGICAL-c415t-f83059b13f0f08198cf48fd7652f2c5054ecd3cc35453f50d14f1a7c7cdd503c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12221-016-6567-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12221-016-6567-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Mozafary, Vajiha</creatorcontrib><creatorcontrib>Payvandy, Pedram</creatorcontrib><title>Mass spring parameters identification for knitted fabric simulation based on FAST testing and particle swarm optimization</title><title>Fibers and polymers</title><addtitle>Fibers Polym</addtitle><description>In computer graphics, Mass-Spring model is used to obtain fast and visual results in physical simulations. A disadvantage of the method is to obtain accurate result because of the difficulty to define parameters of a Mass-Spring Model. Different works and results have been carried out to define model parameters. In this field, researchers have used optimization technique based on meta-heuristic method or applied fabric properties such as FAST and Kawabata test to determine model parameters. So far no research has been done using combination of two mentioned methods to recover mass spring parameters. Therefore; the purpose of this paper is to determine parameters of mass spring model applying Particle Swarm Optimization techniques and FAST test. For this point, the effective properties on fabric drape including stretch, shear, and bending properties are measured using the Fast System. Then, in order to reduce error value between simulated and actual fabric behavior, parameters of the mass spring model such as super elasticity rate, mesh topology and natural length of spring are optimized by applying the Particle Swarm Optimization (PSO). The PSO parameters are specified by using Taguchi Design of Experiment. Finally, fabrics drape are simulated in other situations and compared with its actual result to validate the model parameters. Results show that the optimized model is able to predict the drape behavior of knitted fabric with error value of 2.9 percent as compared with the real result.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Drape</subject><subject>Errors</subject><subject>Fabrics</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Polymer Sciences</subject><subject>Polysulfone resins</subject><subject>Swarm intelligence</subject><issn>1229-9197</issn><issn>1875-0052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1KAzEUhYMoWKsP4C7gxs1objKZzCxLsSpUXFjXIc0kkjp_JimiT2_GcSGCq1xyv3O4nIPQOZArIERcB6CUQkagyApeiKw8QDMoBc8I4fQwzZRWWQWVOEYnIewIKYAKNkMfDyoEHAbvuhc8KK9aE40P2NWmi846raLrO2x7j187F6OpsVVb7zQOrt0303arQvpPw2rxtMHRhDi6qa4eHaPTjcHhXfkW90N0rfv8Vp2iI6uaYM5-3jl6Xt1slnfZ-vH2frlYZzoHHjNbMsKrLTBLLCmhKrXNS1uLglNLNSc8N7pmWjOec2Y5qSG3oIQWuq45YZrN0eXkO_j-bZ9uk60L2jSN6ky_DxLKIilTNDShF3_QXb_3XbouUUwQoJUoEwUTpX0fgjdWpvRa5T8kEDmWIacyZCpDjmXIUUMnzZS08b-c_xV9Ab_ojhw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Mozafary, Vajiha</creator><creator>Payvandy, Pedram</creator><general>The Korean Fiber Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161001</creationdate><title>Mass spring parameters identification for knitted fabric simulation based on FAST testing and particle swarm optimization</title><author>Mozafary, Vajiha ; Payvandy, Pedram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-f83059b13f0f08198cf48fd7652f2c5054ecd3cc35453f50d14f1a7c7cdd503c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Drape</topic><topic>Errors</topic><topic>Fabrics</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Polymer Sciences</topic><topic>Polysulfone resins</topic><topic>Swarm intelligence</topic><toplevel>online_resources</toplevel><creatorcontrib>Mozafary, Vajiha</creatorcontrib><creatorcontrib>Payvandy, Pedram</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Fibers and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mozafary, Vajiha</au><au>Payvandy, Pedram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass spring parameters identification for knitted fabric simulation based on FAST testing and particle swarm optimization</atitle><jtitle>Fibers and polymers</jtitle><stitle>Fibers Polym</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>17</volume><issue>10</issue><spage>1715</spage><epage>1725</epage><pages>1715-1725</pages><issn>1229-9197</issn><eissn>1875-0052</eissn><abstract>In computer graphics, Mass-Spring model is used to obtain fast and visual results in physical simulations. A disadvantage of the method is to obtain accurate result because of the difficulty to define parameters of a Mass-Spring Model. Different works and results have been carried out to define model parameters. In this field, researchers have used optimization technique based on meta-heuristic method or applied fabric properties such as FAST and Kawabata test to determine model parameters. So far no research has been done using combination of two mentioned methods to recover mass spring parameters. Therefore; the purpose of this paper is to determine parameters of mass spring model applying Particle Swarm Optimization techniques and FAST test. For this point, the effective properties on fabric drape including stretch, shear, and bending properties are measured using the Fast System. Then, in order to reduce error value between simulated and actual fabric behavior, parameters of the mass spring model such as super elasticity rate, mesh topology and natural length of spring are optimized by applying the Particle Swarm Optimization (PSO). The PSO parameters are specified by using Taguchi Design of Experiment. Finally, fabrics drape are simulated in other situations and compared with its actual result to validate the model parameters. Results show that the optimized model is able to predict the drape behavior of knitted fabric with error value of 2.9 percent as compared with the real result.</abstract><cop>Seoul</cop><pub>The Korean Fiber Society</pub><doi>10.1007/s12221-016-6567-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1229-9197
ispartof Fibers and polymers, 2016-10, Vol.17 (10), p.1715-1725
issn 1229-9197
1875-0052
language eng
recordid cdi_proquest_miscellaneous_1864539192
source SpringerNature Journals
subjects Chemistry
Chemistry and Materials Science
Computer simulation
Drape
Errors
Fabrics
Mathematical models
Parameters
Polymer Sciences
Polysulfone resins
Swarm intelligence
title Mass spring parameters identification for knitted fabric simulation based on FAST testing and particle swarm optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20spring%20parameters%20identification%20for%20knitted%20fabric%20simulation%20based%20on%20FAST%20testing%20and%20particle%20swarm%20optimization&rft.jtitle=Fibers%20and%20polymers&rft.au=Mozafary,%20Vajiha&rft.date=2016-10-01&rft.volume=17&rft.issue=10&rft.spage=1715&rft.epage=1725&rft.pages=1715-1725&rft.issn=1229-9197&rft.eissn=1875-0052&rft_id=info:doi/10.1007/s12221-016-6567-8&rft_dat=%3Cproquest_cross%3E4242247301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837012978&rft_id=info:pmid/&rfr_iscdi=true