Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests

AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural engineering (New York, N.Y.) N.Y.), 2013-07, Vol.139 (7), p.1227-1236
Hauptverfasser: Lin, Ying-Cheng, Sause, Richard, Ricles, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue 7
container_start_page 1227
container_title Journal of structural engineering (New York, N.Y.)
container_volume 139
creator Lin, Ying-Cheng
Sause, Richard
Ricles, James
description AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.
doi_str_mv 10.1061/(ASCE)ST.1943-541X.0000661
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864537103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864537103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</originalsourceid><addsrcrecordid>eNp1kN1q3DAQhUVpoJufdxC9Si-0kSz5Z3MXzKYJbEhabaB3YiyPUwXbSiS7kDfoY1dmQ-46NzMczplhPkK-Cr4WvBAX51e63n7T-7XYKMlyJX6teaqiEJ_I6kP7TFa8lJJtlMq_kOMYn5OnzEW1In81ujg4Sx8wdD4MMFqkvqNAdxCekGkLPVI9IfZUY9-xGscJgxuf6J0f0sx-YnRxWoTrAANe0rt6S2_emuBaqt0w9zA5P0YKY0t_zBAd01OS0sU5_vZ_MNA9ximekqMO-ohn7_2EPF5v9_UN291_v62vdgwUryaWNQ2Wypag8kZh3qmy4ZnlAFy1HYpW2VZKK5XqwOZYYSmyDEBlHO2mqjatPCHnh70vwb_O6bIZXLTY9zCin6MRVaFyWQouk_XyYLXBxxiwMy_BDRDejOBmwW_Mgt_ovVlQmwW1ecefwsUhDGm7efZzGNNbH8n_B_8BWimL9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864537103</pqid></control><display><type>article</type><title>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lin, Ying-Cheng ; Sause, Richard ; Ricles, James</creator><creatorcontrib>Lin, Ying-Cheng ; Sause, Richard ; Ricles, James</creatorcontrib><description>AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0000661</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Beam-columns ; Beams (structural) ; Collapse ; Columns (structural) ; Earthquakes ; Fuses ; Strands ; Structural damage ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2013-07, Vol.139 (7), p.1227-1236</ispartof><rights>2013 American Society of Civil Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</citedby><cites>FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0000661$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0000661$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Lin, Ying-Cheng</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><creatorcontrib>Ricles, James</creatorcontrib><title>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.</description><subject>Beam-columns</subject><subject>Beams (structural)</subject><subject>Collapse</subject><subject>Columns (structural)</subject><subject>Earthquakes</subject><subject>Fuses</subject><subject>Strands</subject><subject>Structural damage</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kN1q3DAQhUVpoJufdxC9Si-0kSz5Z3MXzKYJbEhabaB3YiyPUwXbSiS7kDfoY1dmQ-46NzMczplhPkK-Cr4WvBAX51e63n7T-7XYKMlyJX6teaqiEJ_I6kP7TFa8lJJtlMq_kOMYn5OnzEW1In81ujg4Sx8wdD4MMFqkvqNAdxCekGkLPVI9IfZUY9-xGscJgxuf6J0f0sx-YnRxWoTrAANe0rt6S2_emuBaqt0w9zA5P0YKY0t_zBAd01OS0sU5_vZ_MNA9ximekqMO-ohn7_2EPF5v9_UN291_v62vdgwUryaWNQ2Wypag8kZh3qmy4ZnlAFy1HYpW2VZKK5XqwOZYYSmyDEBlHO2mqjatPCHnh70vwb_O6bIZXLTY9zCin6MRVaFyWQouk_XyYLXBxxiwMy_BDRDejOBmwW_Mgt_ovVlQmwW1ecefwsUhDGm7efZzGNNbH8n_B_8BWimL9g</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Lin, Ying-Cheng</creator><creator>Sause, Richard</creator><creator>Ricles, James</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130701</creationdate><title>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</title><author>Lin, Ying-Cheng ; Sause, Richard ; Ricles, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beam-columns</topic><topic>Beams (structural)</topic><topic>Collapse</topic><topic>Columns (structural)</topic><topic>Earthquakes</topic><topic>Fuses</topic><topic>Strands</topic><topic>Structural damage</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ying-Cheng</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><creatorcontrib>Ricles, James</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ying-Cheng</au><au>Sause, Richard</au><au>Ricles, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>139</volume><issue>7</issue><spage>1227</spage><epage>1236</epage><pages>1227-1236</pages><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0000661</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9445
ispartof Journal of structural engineering (New York, N.Y.), 2013-07, Vol.139 (7), p.1227-1236
issn 0733-9445
1943-541X
language eng
recordid cdi_proquest_miscellaneous_1864537103
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Beam-columns
Beams (structural)
Collapse
Columns (structural)
Earthquakes
Fuses
Strands
Structural damage
Technical Papers
title Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Performance%20of%20a%20Large-Scale%20Steel%20Self-Centering%20Moment-Resisting%20Frame:%20MCE%20Hybrid%20Simulations%20and%20Quasi-Static%20Pushover%20Tests&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Lin,%20Ying-Cheng&rft.date=2013-07-01&rft.volume=139&rft.issue=7&rft.spage=1227&rft.epage=1236&rft.pages=1227-1236&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0000661&rft_dat=%3Cproquest_cross%3E1864537103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864537103&rft_id=info:pmid/&rfr_iscdi=true