Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests
AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns...
Gespeichert in:
Veröffentlicht in: | Journal of structural engineering (New York, N.Y.) N.Y.), 2013-07, Vol.139 (7), p.1227-1236 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1236 |
---|---|
container_issue | 7 |
container_start_page | 1227 |
container_title | Journal of structural engineering (New York, N.Y.) |
container_volume | 139 |
creator | Lin, Ying-Cheng Sause, Richard Ricles, James |
description | AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding. |
doi_str_mv | 10.1061/(ASCE)ST.1943-541X.0000661 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864537103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864537103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</originalsourceid><addsrcrecordid>eNp1kN1q3DAQhUVpoJufdxC9Si-0kSz5Z3MXzKYJbEhabaB3YiyPUwXbSiS7kDfoY1dmQ-46NzMczplhPkK-Cr4WvBAX51e63n7T-7XYKMlyJX6teaqiEJ_I6kP7TFa8lJJtlMq_kOMYn5OnzEW1In81ujg4Sx8wdD4MMFqkvqNAdxCekGkLPVI9IfZUY9-xGscJgxuf6J0f0sx-YnRxWoTrAANe0rt6S2_emuBaqt0w9zA5P0YKY0t_zBAd01OS0sU5_vZ_MNA9ximekqMO-ohn7_2EPF5v9_UN291_v62vdgwUryaWNQ2Wypag8kZh3qmy4ZnlAFy1HYpW2VZKK5XqwOZYYSmyDEBlHO2mqjatPCHnh70vwb_O6bIZXLTY9zCin6MRVaFyWQouk_XyYLXBxxiwMy_BDRDejOBmwW_Mgt_ovVlQmwW1ecefwsUhDGm7efZzGNNbH8n_B_8BWimL9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864537103</pqid></control><display><type>article</type><title>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lin, Ying-Cheng ; Sause, Richard ; Ricles, James</creator><creatorcontrib>Lin, Ying-Cheng ; Sause, Richard ; Ricles, James</creatorcontrib><description>AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.</description><identifier>ISSN: 0733-9445</identifier><identifier>EISSN: 1943-541X</identifier><identifier>DOI: 10.1061/(ASCE)ST.1943-541X.0000661</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Beam-columns ; Beams (structural) ; Collapse ; Columns (structural) ; Earthquakes ; Fuses ; Strands ; Structural damage ; Technical Papers</subject><ispartof>Journal of structural engineering (New York, N.Y.), 2013-07, Vol.139 (7), p.1227-1236</ispartof><rights>2013 American Society of Civil Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</citedby><cites>FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)ST.1943-541X.0000661$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0000661$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Lin, Ying-Cheng</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><creatorcontrib>Ricles, James</creatorcontrib><title>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</title><title>Journal of structural engineering (New York, N.Y.)</title><description>AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.</description><subject>Beam-columns</subject><subject>Beams (structural)</subject><subject>Collapse</subject><subject>Columns (structural)</subject><subject>Earthquakes</subject><subject>Fuses</subject><subject>Strands</subject><subject>Structural damage</subject><subject>Technical Papers</subject><issn>0733-9445</issn><issn>1943-541X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kN1q3DAQhUVpoJufdxC9Si-0kSz5Z3MXzKYJbEhabaB3YiyPUwXbSiS7kDfoY1dmQ-46NzMczplhPkK-Cr4WvBAX51e63n7T-7XYKMlyJX6teaqiEJ_I6kP7TFa8lJJtlMq_kOMYn5OnzEW1In81ujg4Sx8wdD4MMFqkvqNAdxCekGkLPVI9IfZUY9-xGscJgxuf6J0f0sx-YnRxWoTrAANe0rt6S2_emuBaqt0w9zA5P0YKY0t_zBAd01OS0sU5_vZ_MNA9ximekqMO-ohn7_2EPF5v9_UN291_v62vdgwUryaWNQ2Wypag8kZh3qmy4ZnlAFy1HYpW2VZKK5XqwOZYYSmyDEBlHO2mqjatPCHnh70vwb_O6bIZXLTY9zCin6MRVaFyWQouk_XyYLXBxxiwMy_BDRDejOBmwW_Mgt_ovVlQmwW1ecefwsUhDGm7efZzGNNbH8n_B_8BWimL9g</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Lin, Ying-Cheng</creator><creator>Sause, Richard</creator><creator>Ricles, James</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130701</creationdate><title>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</title><author>Lin, Ying-Cheng ; Sause, Richard ; Ricles, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-2bbe74c7a45b4e5f47b02c0aa04dfe1d4cd33c344fac5e8e7122aa420ec9889d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Beam-columns</topic><topic>Beams (structural)</topic><topic>Collapse</topic><topic>Columns (structural)</topic><topic>Earthquakes</topic><topic>Fuses</topic><topic>Strands</topic><topic>Structural damage</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Ying-Cheng</creatorcontrib><creatorcontrib>Sause, Richard</creatorcontrib><creatorcontrib>Ricles, James</creatorcontrib><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Ying-Cheng</au><au>Sause, Richard</au><au>Ricles, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests</atitle><jtitle>Journal of structural engineering (New York, N.Y.)</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>139</volume><issue>7</issue><spage>1227</spage><epage>1236</epage><pages>1227-1236</pages><issn>0733-9445</issn><eissn>1943-541X</eissn><abstract>AbstractThis paper presents an experimental study of a 0.6-scale 2-bay 4-story steel self-centering moment-resisting frame (SC-MRF) test structure under maximum considered earthquake (MCE) ground motions. A SC-MRF uses high-strength posttensioning (PT) strands to precompress the beams to the columns and to close the gaps between the beam flanges and column flanges that occur at the beam-column interface under earthquake loading, returning the frame to its initial position (i.e., the frame is self-centering). In this study, a beam web friction device is included in each beam-column connection to dissipate energy under seismic loading. The SC-MRF design objectives are to be without structural damage, creating the potential for immediate occupancy performance under the design basis earthquake, and to suffer only modest damage, leading to collapse prevention (CP) performance under the MCE. The CP performance is achieved by avoiding beam web buckling and PT strand yielding and fracture. A special fuse that prevents PT strands from yielding is described. Experimental results from MCE-level earthquake hybrid simulations and quasi-static pushover tests on the SC-MRF test structure are presented. The experimental results show that the SC-MRF did not collapse under the MCE, and that the fuse is a viable alternative to protect PT strands from yielding.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)ST.1943-541X.0000661</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9445 |
ispartof | Journal of structural engineering (New York, N.Y.), 2013-07, Vol.139 (7), p.1227-1236 |
issn | 0733-9445 1943-541X |
language | eng |
recordid | cdi_proquest_miscellaneous_1864537103 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Beam-columns Beams (structural) Collapse Columns (structural) Earthquakes Fuses Strands Structural damage Technical Papers |
title | Seismic Performance of a Large-Scale Steel Self-Centering Moment-Resisting Frame: MCE Hybrid Simulations and Quasi-Static Pushover Tests |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20Performance%20of%20a%20Large-Scale%20Steel%20Self-Centering%20Moment-Resisting%20Frame:%20MCE%20Hybrid%20Simulations%20and%20Quasi-Static%20Pushover%20Tests&rft.jtitle=Journal%20of%20structural%20engineering%20(New%20York,%20N.Y.)&rft.au=Lin,%20Ying-Cheng&rft.date=2013-07-01&rft.volume=139&rft.issue=7&rft.spage=1227&rft.epage=1236&rft.pages=1227-1236&rft.issn=0733-9445&rft.eissn=1943-541X&rft_id=info:doi/10.1061/(ASCE)ST.1943-541X.0000661&rft_dat=%3Cproquest_cross%3E1864537103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864537103&rft_id=info:pmid/&rfr_iscdi=true |