Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry

Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-11, Vol.88 (22), p.10962-10970
Hauptverfasser: Oh, Yoonbae, Park, Cheonho, Kim, Do Hyoung, Shin, Hojin, Kang, Yu Min, DeWaele, Mark, Lee, Jeyeon, Min, Hoon-Ki, Blaha, Charles D, Bennet, Kevin E, Kim, In Young, Lee, Kendall H, Jang, Dong Pyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10970
container_issue 22
container_start_page 10962
container_title Analytical chemistry (Washington)
container_volume 88
creator Oh, Yoonbae
Park, Cheonho
Kim, Do Hyoung
Shin, Hojin
Kang, Yu Min
DeWaele, Mark
Lee, Jeyeon
Min, Hoon-Ki
Blaha, Charles D
Bennet, Kevin E
Kim, In Young
Lee, Kendall H
Jang, Dong Pyo
description Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.
doi_str_mv 10.1021/acs.analchem.6b02605
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864536671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835512574</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-889d1f30b66c5bfcc73f889f74a50a0844aae59897a54bdfbea1a8a9cf0cfe493</originalsourceid><addsrcrecordid>eNqNkUFv0zAYhi0EYl3hHyBkiQuXlM-JHSdHKBtM6sSBMY7RF9fuMjl2sZOKnvnjc9RukzhMO1n6_LzvJ_sh5B2DBYOcfUIVF-jQqhvdL8oW8hLECzJjIoesrKr8JZkBQJHlEuCEnMZ4C8AYsPI1OcmllFxWfEb-XXrXDT50bkMvHL3udp4ub9BtdKSdo1fpVtGzv0NApa0dLQb61W-x75ymK73Tlrb7KRA2OvuCFp2ami5HO3Rbq-lv3GnjQ0_PMQ7ZT4WOLvfKps5rbwfsez2E_RvyyqCN-u3xnJNf52dXy-_Z6se3i-XnVYYc6iGrqnrNTAFtWSrRGqVkYdLMSI4CECrOEbWoq1qi4O3atBoZVlgrA8poXhdz8vHQuw3-z6jj0PRdnJ6FTvsxNqwquSjKUrJnoIUQLBeSJ_TDf-itH0MSM1G8SB_OEz0n_ECp4GMM2jTb0PUY9g2DZvLZJJ_Nvc_m6DPF3h_Lx7bX64fQvcAEwAGY4o-Ln-q8A4dXsFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1843016418</pqid></control><display><type>article</type><title>Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry</title><source>American Chemical Society Journals</source><creator>Oh, Yoonbae ; Park, Cheonho ; Kim, Do Hyoung ; Shin, Hojin ; Kang, Yu Min ; DeWaele, Mark ; Lee, Jeyeon ; Min, Hoon-Ki ; Blaha, Charles D ; Bennet, Kevin E ; Kim, In Young ; Lee, Kendall H ; Jang, Dong Pyo</creator><creatorcontrib>Oh, Yoonbae ; Park, Cheonho ; Kim, Do Hyoung ; Shin, Hojin ; Kang, Yu Min ; DeWaele, Mark ; Lee, Jeyeon ; Min, Hoon-Ki ; Blaha, Charles D ; Bennet, Kevin E ; Kim, In Young ; Lee, Kendall H ; Jang, Dong Pyo</creatorcontrib><description>Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02605</identifier><identifier>PMID: 27774784</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Carbon fibers ; Dopamine ; Electrodes ; In vivo methods and tests ; Inhibition ; Monitors ; Neurons ; Selectivity ; Subtraction ; Voltammetry ; Waveforms</subject><ispartof>Analytical chemistry (Washington), 2016-11, Vol.88 (22), p.10962-10970</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-889d1f30b66c5bfcc73f889f74a50a0844aae59897a54bdfbea1a8a9cf0cfe493</citedby><cites>FETCH-LOGICAL-a409t-889d1f30b66c5bfcc73f889f74a50a0844aae59897a54bdfbea1a8a9cf0cfe493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02605$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02605$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27774784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Yoonbae</creatorcontrib><creatorcontrib>Park, Cheonho</creatorcontrib><creatorcontrib>Kim, Do Hyoung</creatorcontrib><creatorcontrib>Shin, Hojin</creatorcontrib><creatorcontrib>Kang, Yu Min</creatorcontrib><creatorcontrib>DeWaele, Mark</creatorcontrib><creatorcontrib>Lee, Jeyeon</creatorcontrib><creatorcontrib>Min, Hoon-Ki</creatorcontrib><creatorcontrib>Blaha, Charles D</creatorcontrib><creatorcontrib>Bennet, Kevin E</creatorcontrib><creatorcontrib>Kim, In Young</creatorcontrib><creatorcontrib>Lee, Kendall H</creatorcontrib><creatorcontrib>Jang, Dong Pyo</creatorcontrib><title>Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.</description><subject>Analytical chemistry</subject><subject>Carbon fibers</subject><subject>Dopamine</subject><subject>Electrodes</subject><subject>In vivo methods and tests</subject><subject>Inhibition</subject><subject>Monitors</subject><subject>Neurons</subject><subject>Selectivity</subject><subject>Subtraction</subject><subject>Voltammetry</subject><subject>Waveforms</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv0zAYhi0EYl3hHyBkiQuXlM-JHSdHKBtM6sSBMY7RF9fuMjl2sZOKnvnjc9RukzhMO1n6_LzvJ_sh5B2DBYOcfUIVF-jQqhvdL8oW8hLECzJjIoesrKr8JZkBQJHlEuCEnMZ4C8AYsPI1OcmllFxWfEb-XXrXDT50bkMvHL3udp4ub9BtdKSdo1fpVtGzv0NApa0dLQb61W-x75ymK73Tlrb7KRA2OvuCFp2ami5HO3Rbq-lv3GnjQ0_PMQ7ZT4WOLvfKps5rbwfsez2E_RvyyqCN-u3xnJNf52dXy-_Z6se3i-XnVYYc6iGrqnrNTAFtWSrRGqVkYdLMSI4CECrOEbWoq1qi4O3atBoZVlgrA8poXhdz8vHQuw3-z6jj0PRdnJ6FTvsxNqwquSjKUrJnoIUQLBeSJ_TDf-itH0MSM1G8SB_OEz0n_ECp4GMM2jTb0PUY9g2DZvLZJJ_Nvc_m6DPF3h_Lx7bX64fQvcAEwAGY4o-Ln-q8A4dXsFI</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Oh, Yoonbae</creator><creator>Park, Cheonho</creator><creator>Kim, Do Hyoung</creator><creator>Shin, Hojin</creator><creator>Kang, Yu Min</creator><creator>DeWaele, Mark</creator><creator>Lee, Jeyeon</creator><creator>Min, Hoon-Ki</creator><creator>Blaha, Charles D</creator><creator>Bennet, Kevin E</creator><creator>Kim, In Young</creator><creator>Lee, Kendall H</creator><creator>Jang, Dong Pyo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161115</creationdate><title>Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry</title><author>Oh, Yoonbae ; Park, Cheonho ; Kim, Do Hyoung ; Shin, Hojin ; Kang, Yu Min ; DeWaele, Mark ; Lee, Jeyeon ; Min, Hoon-Ki ; Blaha, Charles D ; Bennet, Kevin E ; Kim, In Young ; Lee, Kendall H ; Jang, Dong Pyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-889d1f30b66c5bfcc73f889f74a50a0844aae59897a54bdfbea1a8a9cf0cfe493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytical chemistry</topic><topic>Carbon fibers</topic><topic>Dopamine</topic><topic>Electrodes</topic><topic>In vivo methods and tests</topic><topic>Inhibition</topic><topic>Monitors</topic><topic>Neurons</topic><topic>Selectivity</topic><topic>Subtraction</topic><topic>Voltammetry</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Yoonbae</creatorcontrib><creatorcontrib>Park, Cheonho</creatorcontrib><creatorcontrib>Kim, Do Hyoung</creatorcontrib><creatorcontrib>Shin, Hojin</creatorcontrib><creatorcontrib>Kang, Yu Min</creatorcontrib><creatorcontrib>DeWaele, Mark</creatorcontrib><creatorcontrib>Lee, Jeyeon</creatorcontrib><creatorcontrib>Min, Hoon-Ki</creatorcontrib><creatorcontrib>Blaha, Charles D</creatorcontrib><creatorcontrib>Bennet, Kevin E</creatorcontrib><creatorcontrib>Kim, In Young</creatorcontrib><creatorcontrib>Lee, Kendall H</creatorcontrib><creatorcontrib>Jang, Dong Pyo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Yoonbae</au><au>Park, Cheonho</au><au>Kim, Do Hyoung</au><au>Shin, Hojin</au><au>Kang, Yu Min</au><au>DeWaele, Mark</au><au>Lee, Jeyeon</au><au>Min, Hoon-Ki</au><au>Blaha, Charles D</au><au>Bennet, Kevin E</au><au>Kim, In Young</au><au>Lee, Kendall H</au><au>Jang, Dong Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-11-15</date><risdate>2016</risdate><volume>88</volume><issue>22</issue><spage>10962</spage><epage>10970</epage><pages>10962-10970</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27774784</pmid><doi>10.1021/acs.analchem.6b02605</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-11, Vol.88 (22), p.10962-10970
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1864536671
source American Chemical Society Journals
subjects Analytical chemistry
Carbon fibers
Dopamine
Electrodes
In vivo methods and tests
Inhibition
Monitors
Neurons
Selectivity
Subtraction
Voltammetry
Waveforms
title Monitoring In Vivo Changes in Tonic Extracellular Dopamine Level by Charge-Balancing Multiple Waveform Fast-Scan Cyclic Voltammetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20In%20Vivo%20Changes%20in%20Tonic%20Extracellular%20Dopamine%20Level%20by%20Charge-Balancing%20Multiple%20Waveform%20Fast-Scan%20Cyclic%20Voltammetry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Oh,%20Yoonbae&rft.date=2016-11-15&rft.volume=88&rft.issue=22&rft.spage=10962&rft.epage=10970&rft.pages=10962-10970&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02605&rft_dat=%3Cproquest_cross%3E1835512574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1843016418&rft_id=info:pmid/27774784&rfr_iscdi=true