Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform
A convergence between a natural user interface (NUI) and advanced driver assistance system is considered as a next generation technology. This kind of interfacing system technology becomes more popular in driver assistance system of automobile. Especially, pedestrian detection is an important cue fo...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2016-12, Vol.75 (23), p.15229-15245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15245 |
---|---|
container_issue | 23 |
container_start_page | 15229 |
container_title | Multimedia tools and applications |
container_volume | 75 |
creator | Hong, Gwang-Soo Kim, Byung-Gyu Hwang, Young-Sup Kwon, Kee-Koo |
description | A convergence between a natural user interface (NUI) and advanced driver assistance system is considered as a next generation technology. This kind of interfacing system technology becomes more popular in driver assistance system of automobile. Especially, pedestrian detection is an important cue for intelligent vehicles and interactive driver assistance system. In this paper, we propose a pedestrian detection feature and technique by combining histogram of the oriented gradient (HOG) and discrete wavelet transform (DWT). In the method, the magnitude of motion is used to set region of interest (ROI) for improving detection speed. Then, we employ multi-feature for a pedestrian detection based on the HOG and DWT. In last stage, to classify whether a candidate window contains a pedestrian or not, the designed multi-feature is learned by using the training data with the support vector machine (SVM) mechanism. Experimental results show that the proposed algorithm increases the speed-up factor of 27.21 % by comparing to the existing method using the original HOG feature. |
doi_str_mv | 10.1007/s11042-015-2455-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864536067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4251571611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5cb29b9df426e8aacf272cf386809af693b42946edf3d75b946ae217d787e5cf3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosouH78AG8BL16qSZqP9ijiFwhe9BzSZrLbpW3WJFX01zvLehDBSzLMPO_LDG9RnDF6ySjVV4kxKnhJmSy5kPjsFQsmdVVqzdk-1lVNSy0pOyyOUlpTypTkYlF83dmUyTgPuS892DxHIBtwkHLs7UQcZOhyHyZih2WIfV6NpLUJHMHWqk85LKMdSfAEhzBlHGDDbUsyp35aEtenLqIL-bDvMEAmOdop-RDHk-LA2yHB6c9_XLze3b7cPJRPz_ePN9dPZVeJJpeya3nTNs4LrqC2tvNc885XtappY71qqlbwRihwvnJatlha4Ew7XWuQCB4XFzvfTQxvM15mRtwJhsFOEOZkWK2ErBRVGtHzP-g6zHHC7ZASVDZ1wxRSbEd1MaQUwZtN7EcbPw2jZpuG2aVhMA2zTcNw1PCdJiE7LSH-cv5X9A16K49n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840598916</pqid></control><display><type>article</type><title>Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hong, Gwang-Soo ; Kim, Byung-Gyu ; Hwang, Young-Sup ; Kwon, Kee-Koo</creator><creatorcontrib>Hong, Gwang-Soo ; Kim, Byung-Gyu ; Hwang, Young-Sup ; Kwon, Kee-Koo</creatorcontrib><description>A convergence between a natural user interface (NUI) and advanced driver assistance system is considered as a next generation technology. This kind of interfacing system technology becomes more popular in driver assistance system of automobile. Especially, pedestrian detection is an important cue for intelligent vehicles and interactive driver assistance system. In this paper, we propose a pedestrian detection feature and technique by combining histogram of the oriented gradient (HOG) and discrete wavelet transform (DWT). In the method, the magnitude of motion is used to set region of interest (ROI) for improving detection speed. Then, we employ multi-feature for a pedestrian detection based on the HOG and DWT. In last stage, to classify whether a candidate window contains a pedestrian or not, the designed multi-feature is learned by using the training data with the support vector machine (SVM) mechanism. Experimental results show that the proposed algorithm increases the speed-up factor of 27.21 % by comparing to the existing method using the original HOG feature.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-015-2455-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accident prevention ; Algorithms ; Analysis ; Autonomous vehicles ; Candidates ; Computer Communication Networks ; Computer Science ; Convergence ; Data Structures and Information Theory ; Discrete Wavelet Transform ; Drivers ; Histograms ; Hypotheses ; Intelligent vehicles ; Multimedia Information Systems ; Pedestrians ; Special Purpose and Application-Based Systems ; Studies ; Support vector machines ; User interface ; Vision systems ; Wavelet transforms</subject><ispartof>Multimedia tools and applications, 2016-12, Vol.75 (23), p.15229-15245</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5cb29b9df426e8aacf272cf386809af693b42946edf3d75b946ae217d787e5cf3</citedby><cites>FETCH-LOGICAL-c349t-5cb29b9df426e8aacf272cf386809af693b42946edf3d75b946ae217d787e5cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-015-2455-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-015-2455-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hong, Gwang-Soo</creatorcontrib><creatorcontrib>Kim, Byung-Gyu</creatorcontrib><creatorcontrib>Hwang, Young-Sup</creatorcontrib><creatorcontrib>Kwon, Kee-Koo</creatorcontrib><title>Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>A convergence between a natural user interface (NUI) and advanced driver assistance system is considered as a next generation technology. This kind of interfacing system technology becomes more popular in driver assistance system of automobile. Especially, pedestrian detection is an important cue for intelligent vehicles and interactive driver assistance system. In this paper, we propose a pedestrian detection feature and technique by combining histogram of the oriented gradient (HOG) and discrete wavelet transform (DWT). In the method, the magnitude of motion is used to set region of interest (ROI) for improving detection speed. Then, we employ multi-feature for a pedestrian detection based on the HOG and DWT. In last stage, to classify whether a candidate window contains a pedestrian or not, the designed multi-feature is learned by using the training data with the support vector machine (SVM) mechanism. Experimental results show that the proposed algorithm increases the speed-up factor of 27.21 % by comparing to the existing method using the original HOG feature.</description><subject>Accident prevention</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Autonomous vehicles</subject><subject>Candidates</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Wavelet Transform</subject><subject>Drivers</subject><subject>Histograms</subject><subject>Hypotheses</subject><subject>Intelligent vehicles</subject><subject>Multimedia Information Systems</subject><subject>Pedestrians</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>User interface</subject><subject>Vision systems</subject><subject>Wavelet transforms</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1LxDAQhosouH78AG8BL16qSZqP9ijiFwhe9BzSZrLbpW3WJFX01zvLehDBSzLMPO_LDG9RnDF6ySjVV4kxKnhJmSy5kPjsFQsmdVVqzdk-1lVNSy0pOyyOUlpTypTkYlF83dmUyTgPuS892DxHIBtwkHLs7UQcZOhyHyZih2WIfV6NpLUJHMHWqk85LKMdSfAEhzBlHGDDbUsyp35aEtenLqIL-bDvMEAmOdop-RDHk-LA2yHB6c9_XLze3b7cPJRPz_ePN9dPZVeJJpeya3nTNs4LrqC2tvNc885XtappY71qqlbwRihwvnJatlha4Ew7XWuQCB4XFzvfTQxvM15mRtwJhsFOEOZkWK2ErBRVGtHzP-g6zHHC7ZASVDZ1wxRSbEd1MaQUwZtN7EcbPw2jZpuG2aVhMA2zTcNw1PCdJiE7LSH-cv5X9A16K49n</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Hong, Gwang-Soo</creator><creator>Kim, Byung-Gyu</creator><creator>Hwang, Young-Sup</creator><creator>Kwon, Kee-Koo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform</title><author>Hong, Gwang-Soo ; Kim, Byung-Gyu ; Hwang, Young-Sup ; Kwon, Kee-Koo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5cb29b9df426e8aacf272cf386809af693b42946edf3d75b946ae217d787e5cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accident prevention</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Autonomous vehicles</topic><topic>Candidates</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Wavelet Transform</topic><topic>Drivers</topic><topic>Histograms</topic><topic>Hypotheses</topic><topic>Intelligent vehicles</topic><topic>Multimedia Information Systems</topic><topic>Pedestrians</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>User interface</topic><topic>Vision systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Gwang-Soo</creatorcontrib><creatorcontrib>Kim, Byung-Gyu</creatorcontrib><creatorcontrib>Hwang, Young-Sup</creatorcontrib><creatorcontrib>Kwon, Kee-Koo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Gwang-Soo</au><au>Kim, Byung-Gyu</au><au>Hwang, Young-Sup</au><au>Kwon, Kee-Koo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>75</volume><issue>23</issue><spage>15229</spage><epage>15245</epage><pages>15229-15245</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>A convergence between a natural user interface (NUI) and advanced driver assistance system is considered as a next generation technology. This kind of interfacing system technology becomes more popular in driver assistance system of automobile. Especially, pedestrian detection is an important cue for intelligent vehicles and interactive driver assistance system. In this paper, we propose a pedestrian detection feature and technique by combining histogram of the oriented gradient (HOG) and discrete wavelet transform (DWT). In the method, the magnitude of motion is used to set region of interest (ROI) for improving detection speed. Then, we employ multi-feature for a pedestrian detection based on the HOG and DWT. In last stage, to classify whether a candidate window contains a pedestrian or not, the designed multi-feature is learned by using the training data with the support vector machine (SVM) mechanism. Experimental results show that the proposed algorithm increases the speed-up factor of 27.21 % by comparing to the existing method using the original HOG feature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-015-2455-2</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2016-12, Vol.75 (23), p.15229-15245 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864536067 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accident prevention Algorithms Analysis Autonomous vehicles Candidates Computer Communication Networks Computer Science Convergence Data Structures and Information Theory Discrete Wavelet Transform Drivers Histograms Hypotheses Intelligent vehicles Multimedia Information Systems Pedestrians Special Purpose and Application-Based Systems Studies Support vector machines User interface Vision systems Wavelet transforms |
title | Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20multi-feature%20pedestrian%20detection%20algorithm%20based%20on%20histogram%20of%20oriented%20gradient%20using%20discrete%20wavelet%20transform&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Hong,%20Gwang-Soo&rft.date=2016-12-01&rft.volume=75&rft.issue=23&rft.spage=15229&rft.epage=15245&rft.pages=15229-15245&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-015-2455-2&rft_dat=%3Cproquest_cross%3E4251571611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1840598916&rft_id=info:pmid/&rfr_iscdi=true |