Multi-Objective Optimization of Freeway Network Traffic Flow Using Particle Swarm Optimization

A multi-objective optimization problem of ramp metering and dynamic route guidance is presented. The problem domain, a freeway integration control application considers the efficiency and equity of system, is formulated as a multi-objective optimization problem. The Gini coefficient is adopted in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-01, Vol.713-715 (Mechatronics Engineering and Modern Information Technologies in Industrial Engineering), p.1777-1781
1. Verfasser: Wen, Kai Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1781
container_issue Mechatronics Engineering and Modern Information Technologies in Industrial Engineering
container_start_page 1777
container_title Applied Mechanics and Materials
container_volume 713-715
creator Wen, Kai Ge
description A multi-objective optimization problem of ramp metering and dynamic route guidance is presented. The problem domain, a freeway integration control application considers the efficiency and equity of system, is formulated as a multi-objective optimization problem. The Gini coefficient is adopted in this study as an indicator of equity. The control strategy’s effect is demonstrated through its application to the simple freeway network. Analyses of simulation results using this approach show the equity of the system have a significant improvement over traditional control, especially for the case of large traffic demand. Using the multi-objective optimization approach, the Gini coefficient of the network has been reduced by 55% compared to traditional method.
doi_str_mv 10.4028/www.scientific.net/AMM.713-715.1777
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864535180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4203368921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2497-e695ced7244bfe977330eb026338f9bbb5b26439d05348553e28e4be2cc2c5613</originalsourceid><addsrcrecordid>eNqVkVtrFDEUgINWsLb9DwFfBJlp7pfHsnRV6LqFtq-GTHpGs87OrEm2Q_31pq7g5c2HQx7Ox5cDH0JvKWkFYeZ8nuc2hwhjiX0M7Qjl_GK1ajXljaaypVrrZ-iYKsUaLQx7js6sNpxwwyXX1h793JHGcq5eolc5bwhRggpzjD6t9kOJzbrbQCjxAfB6V-I2fvclTiOeerxMALN_xB-hzFP6im-T7-sNeDlMM77LcfyMr30qMQyAb2aftn8ZTtGL3g8Zzn69J-hueXm7eN9crd99WFxcNYEJqxtQVga410yIrgerNecEOsIU56a3XdfJjinB7T2RXBgpOTADogMWAgtSUX6C3hy8uzR920MubhtzgGHwI0z77KhRQnJJDano63_QzbRPY72uUkwqTZhWlVocqJCmnBP0bpfi1qdHR4l7auJqE_e7iatNXG3iapM60j01qZbLg6UkP-YC4csfn_2H5weo8J0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825670276</pqid></control><display><type>article</type><title>Multi-Objective Optimization of Freeway Network Traffic Flow Using Particle Swarm Optimization</title><source>Scientific.net Journals</source><creator>Wen, Kai Ge</creator><creatorcontrib>Wen, Kai Ge</creatorcontrib><description>A multi-objective optimization problem of ramp metering and dynamic route guidance is presented. The problem domain, a freeway integration control application considers the efficiency and equity of system, is formulated as a multi-objective optimization problem. The Gini coefficient is adopted in this study as an indicator of equity. The control strategy’s effect is demonstrated through its application to the simple freeway network. Analyses of simulation results using this approach show the equity of the system have a significant improvement over traditional control, especially for the case of large traffic demand. Using the multi-objective optimization approach, the Gini coefficient of the network has been reduced by 55% compared to traditional method.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038353799</identifier><identifier>ISBN: 3038353795</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.713-715.1777</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Coefficients ; Control systems ; Freeways ; Multiple objective analysis ; Networks ; Optimization ; Ramps ; Traffic flow</subject><ispartof>Applied Mechanics and Materials, 2015-01, Vol.713-715 (Mechatronics Engineering and Modern Information Technologies in Industrial Engineering), p.1777-1781</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2497-e695ced7244bfe977330eb026338f9bbb5b26439d05348553e28e4be2cc2c5613</citedby><cites>FETCH-LOGICAL-c2497-e695ced7244bfe977330eb026338f9bbb5b26439d05348553e28e4be2cc2c5613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3744?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Kai Ge</creatorcontrib><title>Multi-Objective Optimization of Freeway Network Traffic Flow Using Particle Swarm Optimization</title><title>Applied Mechanics and Materials</title><description>A multi-objective optimization problem of ramp metering and dynamic route guidance is presented. The problem domain, a freeway integration control application considers the efficiency and equity of system, is formulated as a multi-objective optimization problem. The Gini coefficient is adopted in this study as an indicator of equity. The control strategy’s effect is demonstrated through its application to the simple freeway network. Analyses of simulation results using this approach show the equity of the system have a significant improvement over traditional control, especially for the case of large traffic demand. Using the multi-objective optimization approach, the Gini coefficient of the network has been reduced by 55% compared to traditional method.</description><subject>Coefficients</subject><subject>Control systems</subject><subject>Freeways</subject><subject>Multiple objective analysis</subject><subject>Networks</subject><subject>Optimization</subject><subject>Ramps</subject><subject>Traffic flow</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038353799</isbn><isbn>3038353795</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqVkVtrFDEUgINWsLb9DwFfBJlp7pfHsnRV6LqFtq-GTHpGs87OrEm2Q_31pq7g5c2HQx7Ox5cDH0JvKWkFYeZ8nuc2hwhjiX0M7Qjl_GK1ajXljaaypVrrZ-iYKsUaLQx7js6sNpxwwyXX1h793JHGcq5eolc5bwhRggpzjD6t9kOJzbrbQCjxAfB6V-I2fvclTiOeerxMALN_xB-hzFP6im-T7-sNeDlMM77LcfyMr30qMQyAb2aftn8ZTtGL3g8Zzn69J-hueXm7eN9crd99WFxcNYEJqxtQVga410yIrgerNecEOsIU56a3XdfJjinB7T2RXBgpOTADogMWAgtSUX6C3hy8uzR920MubhtzgGHwI0z77KhRQnJJDano63_QzbRPY72uUkwqTZhWlVocqJCmnBP0bpfi1qdHR4l7auJqE_e7iatNXG3iapM60j01qZbLg6UkP-YC4csfn_2H5weo8J0c</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wen, Kai Ge</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>Multi-Objective Optimization of Freeway Network Traffic Flow Using Particle Swarm Optimization</title><author>Wen, Kai Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2497-e695ced7244bfe977330eb026338f9bbb5b26439d05348553e28e4be2cc2c5613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coefficients</topic><topic>Control systems</topic><topic>Freeways</topic><topic>Multiple objective analysis</topic><topic>Networks</topic><topic>Optimization</topic><topic>Ramps</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Kai Ge</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Kai Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Optimization of Freeway Network Traffic Flow Using Particle Swarm Optimization</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>713-715</volume><issue>Mechatronics Engineering and Modern Information Technologies in Industrial Engineering</issue><spage>1777</spage><epage>1781</epage><pages>1777-1781</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038353799</isbn><isbn>3038353795</isbn><abstract>A multi-objective optimization problem of ramp metering and dynamic route guidance is presented. The problem domain, a freeway integration control application considers the efficiency and equity of system, is formulated as a multi-objective optimization problem. The Gini coefficient is adopted in this study as an indicator of equity. The control strategy’s effect is demonstrated through its application to the simple freeway network. Analyses of simulation results using this approach show the equity of the system have a significant improvement over traditional control, especially for the case of large traffic demand. Using the multi-objective optimization approach, the Gini coefficient of the network has been reduced by 55% compared to traditional method.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.713-715.1777</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2015-01, Vol.713-715 (Mechatronics Engineering and Modern Information Technologies in Industrial Engineering), p.1777-1781
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1864535180
source Scientific.net Journals
subjects Coefficients
Control systems
Freeways
Multiple objective analysis
Networks
Optimization
Ramps
Traffic flow
title Multi-Objective Optimization of Freeway Network Traffic Flow Using Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Optimization%20of%20Freeway%20Network%20Traffic%20Flow%20Using%20Particle%20Swarm%20Optimization&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Wen,%20Kai%20Ge&rft.date=2015-01-01&rft.volume=713-715&rft.issue=Mechatronics%20Engineering%20and%20Modern%20Information%20Technologies%20in%20Industrial%20Engineering&rft.spage=1777&rft.epage=1781&rft.pages=1777-1781&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038353799&rft.isbn_list=3038353795&rft_id=info:doi/10.4028/www.scientific.net/AMM.713-715.1777&rft_dat=%3Cproquest_cross%3E4203368921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825670276&rft_id=info:pmid/&rfr_iscdi=true