Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite
The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.116-122 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 679 |
creator | Sazgar, A. Movahhedy, M.R. Mahnama, M. Sohrabpour, S. |
description | The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite. |
doi_str_mv | 10.1016/j.msea.2016.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864533941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316312096</els_id><sourcerecordid>1942721794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoJu0f6AnQS-9eKMPW7aglyXNFwRySc5iVh4TLbLlSLYhved_V-7mlENOM4ye92U0LyE_ONtyxtXFYdsnhK3IfR5sGeNfyIY3tSxKLdUJ2TAteFExLb-Ss5QOLBMlqzbk7Q8u6MPY4zDR0FGgffBoZw-Rtq8D9M7SPSRsqQ3PmNyC9G8YMFMtetqFSMeIrbOTC8N__UDxZXYL-NWwhwmjA0_3-AyLy_Sq2PmLnRcPMlv2Y0huwm_ktAOf8Pt7PSdP11ePl7fF_cPN3eXuvrBS8amQogXV1NCC3NdCacVKyctqj5zbDiqOKEB2DdaiaZhuVH6EWleq6aRQSqI8J7-OvmMMLzOmyfQuWfQeBgxzMrxRZSWlLnlGf35AD2GOQ97OcF2KWvBal5kSR8rGkFLEzozR9RBfDWdmTcYczJqMWZNZZ_nuWfT7KML81cVhNMk6HGy-Y0Q7mTa4z-T_APuKlyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942721794</pqid></control><display><type>article</type><title>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sazgar, A. ; Movahhedy, M.R. ; Mahnama, M. ; Sohrabpour, S.</creator><creatorcontrib>Sazgar, A. ; Movahhedy, M.R. ; Mahnama, M. ; Sohrabpour, S.</creatorcontrib><description>The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.10.001</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum base alloys ; Aluminum oxide ; Cohesion ; Cohesive zone model ; Composite materials ; Computer simulation ; Concentration (composition) ; Equivalence ; Experiments ; FEM ; Finite element method ; Mathematical models ; Matrix-particle interface ; MD simulation ; Metal matrix composite ; Molecular dynamics ; Particle interactions ; Particulate composites ; Simulation ; Strain rate ; Stress-strain curves ; Stress-strain relationships ; Temperature effects ; Traction ; Virtual environments ; Volume fraction</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.116-122</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</citedby><cites>FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sazgar, A.</creatorcontrib><creatorcontrib>Movahhedy, M.R.</creatorcontrib><creatorcontrib>Mahnama, M.</creatorcontrib><creatorcontrib>Sohrabpour, S.</creatorcontrib><title>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.</description><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Cohesion</subject><subject>Cohesive zone model</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Concentration (composition)</subject><subject>Equivalence</subject><subject>Experiments</subject><subject>FEM</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Matrix-particle interface</subject><subject>MD simulation</subject><subject>Metal matrix composite</subject><subject>Molecular dynamics</subject><subject>Particle interactions</subject><subject>Particulate composites</subject><subject>Simulation</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Temperature effects</subject><subject>Traction</subject><subject>Virtual environments</subject><subject>Volume fraction</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJoJu0f6AnQS-9eKMPW7aglyXNFwRySc5iVh4TLbLlSLYhved_V-7mlENOM4ye92U0LyE_ONtyxtXFYdsnhK3IfR5sGeNfyIY3tSxKLdUJ2TAteFExLb-Ss5QOLBMlqzbk7Q8u6MPY4zDR0FGgffBoZw-Rtq8D9M7SPSRsqQ3PmNyC9G8YMFMtetqFSMeIrbOTC8N__UDxZXYL-NWwhwmjA0_3-AyLy_Sq2PmLnRcPMlv2Y0huwm_ktAOf8Pt7PSdP11ePl7fF_cPN3eXuvrBS8amQogXV1NCC3NdCacVKyctqj5zbDiqOKEB2DdaiaZhuVH6EWleq6aRQSqI8J7-OvmMMLzOmyfQuWfQeBgxzMrxRZSWlLnlGf35AD2GOQ97OcF2KWvBal5kSR8rGkFLEzozR9RBfDWdmTcYczJqMWZNZZ_nuWfT7KML81cVhNMk6HGy-Y0Q7mTa4z-T_APuKlyA</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Sazgar, A.</creator><creator>Movahhedy, M.R.</creator><creator>Mahnama, M.</creator><creator>Sohrabpour, S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>20170102</creationdate><title>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</title><author>Sazgar, A. ; Movahhedy, M.R. ; Mahnama, M. ; Sohrabpour, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Cohesion</topic><topic>Cohesive zone model</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Concentration (composition)</topic><topic>Equivalence</topic><topic>Experiments</topic><topic>FEM</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Matrix-particle interface</topic><topic>MD simulation</topic><topic>Metal matrix composite</topic><topic>Molecular dynamics</topic><topic>Particle interactions</topic><topic>Particulate composites</topic><topic>Simulation</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Temperature effects</topic><topic>Traction</topic><topic>Virtual environments</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazgar, A.</creatorcontrib><creatorcontrib>Movahhedy, M.R.</creatorcontrib><creatorcontrib>Mahnama, M.</creatorcontrib><creatorcontrib>Sohrabpour, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazgar, A.</au><au>Movahhedy, M.R.</au><au>Mahnama, M.</au><au>Sohrabpour, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-01-02</date><risdate>2017</risdate><volume>679</volume><spage>116</spage><epage>122</epage><pages>116-122</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.10.001</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.116-122 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864533941 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum base alloys Aluminum oxide Cohesion Cohesive zone model Composite materials Computer simulation Concentration (composition) Equivalence Experiments FEM Finite element method Mathematical models Matrix-particle interface MD simulation Metal matrix composite Molecular dynamics Particle interactions Particulate composites Simulation Strain rate Stress-strain curves Stress-strain relationships Temperature effects Traction Virtual environments Volume fraction |
title | Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20molecular%20dynamic%20based%20cohesive%20zone%20model%20for%20prediction%20of%20an%20equivalent%20material%20behavior%20for%20Al/Al2O3%20composite&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Sazgar,%20A.&rft.date=2017-01-02&rft.volume=679&rft.spage=116&rft.epage=122&rft.pages=116-122&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.10.001&rft_dat=%3Cproquest_cross%3E1942721794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942721794&rft_id=info:pmid/&rft_els_id=S0921509316312096&rfr_iscdi=true |