Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite

The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.116-122
Hauptverfasser: Sazgar, A., Movahhedy, M.R., Mahnama, M., Sohrabpour, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue
container_start_page 116
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 679
creator Sazgar, A.
Movahhedy, M.R.
Mahnama, M.
Sohrabpour, S.
description The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.
doi_str_mv 10.1016/j.msea.2016.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864533941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509316312096</els_id><sourcerecordid>1942721794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoJu0f6AnQS-9eKMPW7aglyXNFwRySc5iVh4TLbLlSLYhved_V-7mlENOM4ye92U0LyE_ONtyxtXFYdsnhK3IfR5sGeNfyIY3tSxKLdUJ2TAteFExLb-Ss5QOLBMlqzbk7Q8u6MPY4zDR0FGgffBoZw-Rtq8D9M7SPSRsqQ3PmNyC9G8YMFMtetqFSMeIrbOTC8N__UDxZXYL-NWwhwmjA0_3-AyLy_Sq2PmLnRcPMlv2Y0huwm_ktAOf8Pt7PSdP11ePl7fF_cPN3eXuvrBS8amQogXV1NCC3NdCacVKyctqj5zbDiqOKEB2DdaiaZhuVH6EWleq6aRQSqI8J7-OvmMMLzOmyfQuWfQeBgxzMrxRZSWlLnlGf35AD2GOQ97OcF2KWvBal5kSR8rGkFLEzozR9RBfDWdmTcYczJqMWZNZZ_nuWfT7KML81cVhNMk6HGy-Y0Q7mTa4z-T_APuKlyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1942721794</pqid></control><display><type>article</type><title>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sazgar, A. ; Movahhedy, M.R. ; Mahnama, M. ; Sohrabpour, S.</creator><creatorcontrib>Sazgar, A. ; Movahhedy, M.R. ; Mahnama, M. ; Sohrabpour, S.</creatorcontrib><description>The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2016.10.001</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum base alloys ; Aluminum oxide ; Cohesion ; Cohesive zone model ; Composite materials ; Computer simulation ; Concentration (composition) ; Equivalence ; Experiments ; FEM ; Finite element method ; Mathematical models ; Matrix-particle interface ; MD simulation ; Metal matrix composite ; Molecular dynamics ; Particle interactions ; Particulate composites ; Simulation ; Strain rate ; Stress-strain curves ; Stress-strain relationships ; Temperature effects ; Traction ; Virtual environments ; Volume fraction</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.116-122</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 2, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</citedby><cites>FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2016.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sazgar, A.</creatorcontrib><creatorcontrib>Movahhedy, M.R.</creatorcontrib><creatorcontrib>Mahnama, M.</creatorcontrib><creatorcontrib>Sohrabpour, S.</creatorcontrib><title>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.</description><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>Cohesion</subject><subject>Cohesive zone model</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Concentration (composition)</subject><subject>Equivalence</subject><subject>Experiments</subject><subject>FEM</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Matrix-particle interface</subject><subject>MD simulation</subject><subject>Metal matrix composite</subject><subject>Molecular dynamics</subject><subject>Particle interactions</subject><subject>Particulate composites</subject><subject>Simulation</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Temperature effects</subject><subject>Traction</subject><subject>Virtual environments</subject><subject>Volume fraction</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJoJu0f6AnQS-9eKMPW7aglyXNFwRySc5iVh4TLbLlSLYhved_V-7mlENOM4ye92U0LyE_ONtyxtXFYdsnhK3IfR5sGeNfyIY3tSxKLdUJ2TAteFExLb-Ss5QOLBMlqzbk7Q8u6MPY4zDR0FGgffBoZw-Rtq8D9M7SPSRsqQ3PmNyC9G8YMFMtetqFSMeIrbOTC8N__UDxZXYL-NWwhwmjA0_3-AyLy_Sq2PmLnRcPMlv2Y0huwm_ktAOf8Pt7PSdP11ePl7fF_cPN3eXuvrBS8amQogXV1NCC3NdCacVKyctqj5zbDiqOKEB2DdaiaZhuVH6EWleq6aRQSqI8J7-OvmMMLzOmyfQuWfQeBgxzMrxRZSWlLnlGf35AD2GOQ97OcF2KWvBal5kSR8rGkFLEzozR9RBfDWdmTcYczJqMWZNZZ_nuWfT7KML81cVhNMk6HGy-Y0Q7mTa4z-T_APuKlyA</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Sazgar, A.</creator><creator>Movahhedy, M.R.</creator><creator>Mahnama, M.</creator><creator>Sohrabpour, S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QF</scope></search><sort><creationdate>20170102</creationdate><title>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</title><author>Sazgar, A. ; Movahhedy, M.R. ; Mahnama, M. ; Sohrabpour, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-32da687ada3b72696043145be11cfa51ee2a3f8e72880986314a79568f32663e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>Cohesion</topic><topic>Cohesive zone model</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Concentration (composition)</topic><topic>Equivalence</topic><topic>Experiments</topic><topic>FEM</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Matrix-particle interface</topic><topic>MD simulation</topic><topic>Metal matrix composite</topic><topic>Molecular dynamics</topic><topic>Particle interactions</topic><topic>Particulate composites</topic><topic>Simulation</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Temperature effects</topic><topic>Traction</topic><topic>Virtual environments</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazgar, A.</creatorcontrib><creatorcontrib>Movahhedy, M.R.</creatorcontrib><creatorcontrib>Mahnama, M.</creatorcontrib><creatorcontrib>Sohrabpour, S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazgar, A.</au><au>Movahhedy, M.R.</au><au>Mahnama, M.</au><au>Sohrabpour, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2017-01-02</date><risdate>2017</risdate><volume>679</volume><spage>116</spage><epage>122</epage><pages>116-122</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The interfacial behavior of composites is often simulated using a cohesive zone model (CZM). In this approach, a traction-separation (T-S) relation between the matrix and reinforcement particles, which is often obtained from experimental results, is employed. However, since the determination of this relation from experimental results is difficult, the molecular dynamics (MD) simulation may be used as a virtual environment to obtain this relation. In this study, MD simulations under the normal and shear loadings are used to obtain the interface behavior of Al/Al2O3 composite material and to derive the T-S relation. For better agreement with Al/Al2O3 interfacial behavior, the exponential form of the T-S relation suggested by Needleman [1] is modified to account for thermal effects. The MD results are employed to develop a parameterized cohesive zone model which is implemented in a finite element model of the matrix-particle interactions. Stress-strain curves obtained from simulations under different loading conditions and volume fractions show a close correlation with experimental results. Finally, by studying the effects of strain rate and volume fraction of particles in Al(6061-T6)/Al2O3 composite, an equivalent homogeneous model is introduced which can predict the overall behavior of the composite.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2016.10.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2017-01, Vol.679, p.116-122
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1864533941
source Access via ScienceDirect (Elsevier)
subjects Aluminum base alloys
Aluminum oxide
Cohesion
Cohesive zone model
Composite materials
Computer simulation
Concentration (composition)
Equivalence
Experiments
FEM
Finite element method
Mathematical models
Matrix-particle interface
MD simulation
Metal matrix composite
Molecular dynamics
Particle interactions
Particulate composites
Simulation
Strain rate
Stress-strain curves
Stress-strain relationships
Temperature effects
Traction
Virtual environments
Volume fraction
title Development of a molecular dynamic based cohesive zone model for prediction of an equivalent material behavior for Al/Al2O3 composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20molecular%20dynamic%20based%20cohesive%20zone%20model%20for%20prediction%20of%20an%20equivalent%20material%20behavior%20for%20Al/Al2O3%20composite&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Sazgar,%20A.&rft.date=2017-01-02&rft.volume=679&rft.spage=116&rft.epage=122&rft.pages=116-122&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2016.10.001&rft_dat=%3Cproquest_cross%3E1942721794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1942721794&rft_id=info:pmid/&rft_els_id=S0921509316312096&rfr_iscdi=true