Improved SCS-CN–Inspired Model

AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrologic engineering 2012-11, Vol.17 (11), p.1164-1172
Hauptverfasser: Suresh Babu, P, Mishra, S. K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1172
container_issue 11
container_start_page 1164
container_title Journal of hydrologic engineering
container_volume 17
creator Suresh Babu, P
Mishra, S. K
description AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.
doi_str_mv 10.1061/(ASCE)HE.1943-5584.0000435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864533173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864533173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKvvUFzVxdSTJpmLuzJMnULVRXUdcoWWuZl0BHe-g2_ok5ihpTvBszkX_v_n8CF0i2GGIcb308UmL-7KYoYzSiLGUjqDUJSwMzQ63c7DDCmNIM6yS3Tl_Q4A07CM0GRVd679MHqyyTdR_vzz9b1qfLd14fLUalNdowsrKm9ujn2M3pbFa15G65fHVb5YR4IkbB9pqoFKzQRgSZUhbB4baRNlpTEgSUyDQM4JVamUNJOMWYuVtgITokHJjIzR9JAb3nnvjd_zeuuVqSrRmLb3HKcxZYTghPxDyhgkDEMSpA8HqXKt985Y3rltLdwnx8AHgpwPBHlZ8IEWH2jxI8Fgjg9mEdL5ru1dEwicnH8bfwG_fnR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855075107</pqid></control><display><type>article</type><title>Improved SCS-CN–Inspired Model</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Suresh Babu, P ; Mishra, S. K</creator><creatorcontrib>Suresh Babu, P ; Mishra, S. K</creatorcontrib><description>AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0000435</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Hydrology ; Mathematical models ; Moisture ; Parameters ; Runoff ; Soil conservation ; Storms ; Technical Papers ; Watersheds</subject><ispartof>Journal of hydrologic engineering, 2012-11, Vol.17 (11), p.1164-1172</ispartof><rights>2012 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</citedby><cites>FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0000435$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0000435$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,75938,75946</link.rule.ids></links><search><creatorcontrib>Suresh Babu, P</creatorcontrib><creatorcontrib>Mishra, S. K</creatorcontrib><title>Improved SCS-CN–Inspired Model</title><title>Journal of hydrologic engineering</title><description>AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.</description><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Moisture</subject><subject>Parameters</subject><subject>Runoff</subject><subject>Soil conservation</subject><subject>Storms</subject><subject>Technical Papers</subject><subject>Watersheds</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKvvUFzVxdSTJpmLuzJMnULVRXUdcoWWuZl0BHe-g2_ok5ihpTvBszkX_v_n8CF0i2GGIcb308UmL-7KYoYzSiLGUjqDUJSwMzQ63c7DDCmNIM6yS3Tl_Q4A07CM0GRVd679MHqyyTdR_vzz9b1qfLd14fLUalNdowsrKm9ujn2M3pbFa15G65fHVb5YR4IkbB9pqoFKzQRgSZUhbB4baRNlpTEgSUyDQM4JVamUNJOMWYuVtgITokHJjIzR9JAb3nnvjd_zeuuVqSrRmLb3HKcxZYTghPxDyhgkDEMSpA8HqXKt985Y3rltLdwnx8AHgpwPBHlZ8IEWH2jxI8Fgjg9mEdL5ru1dEwicnH8bfwG_fnR0</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Suresh Babu, P</creator><creator>Mishra, S. K</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20121101</creationdate><title>Improved SCS-CN–Inspired Model</title><author>Suresh Babu, P ; Mishra, S. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Moisture</topic><topic>Parameters</topic><topic>Runoff</topic><topic>Soil conservation</topic><topic>Storms</topic><topic>Technical Papers</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh Babu, P</creatorcontrib><creatorcontrib>Mishra, S. K</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh Babu, P</au><au>Mishra, S. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved SCS-CN–Inspired Model</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>17</volume><issue>11</issue><spage>1164</spage><epage>1172</epage><pages>1164-1172</pages><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0000435</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1084-0699
ispartof Journal of hydrologic engineering, 2012-11, Vol.17 (11), p.1164-1172
issn 1084-0699
1943-5584
language eng
recordid cdi_proquest_miscellaneous_1864533173
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Hydrology
Mathematical models
Moisture
Parameters
Runoff
Soil conservation
Storms
Technical Papers
Watersheds
title Improved SCS-CN–Inspired Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20SCS-CN%E2%80%93Inspired%20Model&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Suresh%20Babu,%20P&rft.date=2012-11-01&rft.volume=17&rft.issue=11&rft.spage=1164&rft.epage=1172&rft.pages=1164-1172&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0000435&rft_dat=%3Cproquest_cross%3E1864533173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855075107&rft_id=info:pmid/&rfr_iscdi=true