Improved SCS-CN–Inspired Model
AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the...
Gespeichert in:
Veröffentlicht in: | Journal of hydrologic engineering 2012-11, Vol.17 (11), p.1164-1172 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1172 |
---|---|
container_issue | 11 |
container_start_page | 1164 |
container_title | Journal of hydrologic engineering |
container_volume | 17 |
creator | Suresh Babu, P Mishra, S. K |
description | AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied. |
doi_str_mv | 10.1061/(ASCE)HE.1943-5584.0000435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864533173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864533173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</originalsourceid><addsrcrecordid>eNqNkMtKAzEUhoMoWKvvUFzVxdSTJpmLuzJMnULVRXUdcoWWuZl0BHe-g2_ok5ihpTvBszkX_v_n8CF0i2GGIcb308UmL-7KYoYzSiLGUjqDUJSwMzQ63c7DDCmNIM6yS3Tl_Q4A07CM0GRVd679MHqyyTdR_vzz9b1qfLd14fLUalNdowsrKm9ujn2M3pbFa15G65fHVb5YR4IkbB9pqoFKzQRgSZUhbB4baRNlpTEgSUyDQM4JVamUNJOMWYuVtgITokHJjIzR9JAb3nnvjd_zeuuVqSrRmLb3HKcxZYTghPxDyhgkDEMSpA8HqXKt985Y3rltLdwnx8AHgpwPBHlZ8IEWH2jxI8Fgjg9mEdL5ru1dEwicnH8bfwG_fnR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855075107</pqid></control><display><type>article</type><title>Improved SCS-CN–Inspired Model</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Suresh Babu, P ; Mishra, S. K</creator><creatorcontrib>Suresh Babu, P ; Mishra, S. K</creatorcontrib><description>AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.</description><identifier>ISSN: 1084-0699</identifier><identifier>EISSN: 1943-5584</identifier><identifier>DOI: 10.1061/(ASCE)HE.1943-5584.0000435</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Hydrology ; Mathematical models ; Moisture ; Parameters ; Runoff ; Soil conservation ; Storms ; Technical Papers ; Watersheds</subject><ispartof>Journal of hydrologic engineering, 2012-11, Vol.17 (11), p.1164-1172</ispartof><rights>2012 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</citedby><cites>FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HE.1943-5584.0000435$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0000435$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,75938,75946</link.rule.ids></links><search><creatorcontrib>Suresh Babu, P</creatorcontrib><creatorcontrib>Mishra, S. K</creatorcontrib><title>Improved SCS-CN–Inspired Model</title><title>Journal of hydrologic engineering</title><description>AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.</description><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Moisture</subject><subject>Parameters</subject><subject>Runoff</subject><subject>Soil conservation</subject><subject>Storms</subject><subject>Technical Papers</subject><subject>Watersheds</subject><issn>1084-0699</issn><issn>1943-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKAzEUhoMoWKvvUFzVxdSTJpmLuzJMnULVRXUdcoWWuZl0BHe-g2_ok5ihpTvBszkX_v_n8CF0i2GGIcb308UmL-7KYoYzSiLGUjqDUJSwMzQ63c7DDCmNIM6yS3Tl_Q4A07CM0GRVd679MHqyyTdR_vzz9b1qfLd14fLUalNdowsrKm9ujn2M3pbFa15G65fHVb5YR4IkbB9pqoFKzQRgSZUhbB4baRNlpTEgSUyDQM4JVamUNJOMWYuVtgITokHJjIzR9JAb3nnvjd_zeuuVqSrRmLb3HKcxZYTghPxDyhgkDEMSpA8HqXKt985Y3rltLdwnx8AHgpwPBHlZ8IEWH2jxI8Fgjg9mEdL5ru1dEwicnH8bfwG_fnR0</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Suresh Babu, P</creator><creator>Mishra, S. K</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20121101</creationdate><title>Improved SCS-CN–Inspired Model</title><author>Suresh Babu, P ; Mishra, S. K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a375t-d4d04bd5a01b4ce3526ebf7cfbee0b364d4db234c8bb49b55ff1cdfa133d0cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Moisture</topic><topic>Parameters</topic><topic>Runoff</topic><topic>Soil conservation</topic><topic>Storms</topic><topic>Technical Papers</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suresh Babu, P</creatorcontrib><creatorcontrib>Mishra, S. K</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrologic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suresh Babu, P</au><au>Mishra, S. K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved SCS-CN–Inspired Model</atitle><jtitle>Journal of hydrologic engineering</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>17</volume><issue>11</issue><spage>1164</spage><epage>1172</epage><pages>1164-1172</pages><issn>1084-0699</issn><eissn>1943-5584</eissn><abstract>AbstractThe present study enhances the Soil Conservation Service curve number (SCS-CN) predictions by improving the model structure, considering the following issues of concern: implementation of antecedent moisture condition procedure, fixation of initial abstraction ratio (λ) at 0.2, usage of the potential maximum retention parameter, and incorporation of storm intensity or duration in runoff estimation. A five-parameter M3 model is proposed, with storm duration and a new parameter Sabs (potential maximum retention), to overcome most of the above limitations prevailing in the SCS-CN model. For simplicity and practical applications obviating storm-duration data, a four-parameter M4 model is also proposed. The performance of the suggested and the available models has been evaluated using the data of 82 small watersheds in the United States of America. As demonstrated, the M3 model performs the best, whereas the conventional SCS-CN model performs the poorest among all the models studied.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HE.1943-5584.0000435</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-0699 |
ispartof | Journal of hydrologic engineering, 2012-11, Vol.17 (11), p.1164-1172 |
issn | 1084-0699 1943-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864533173 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Hydrology Mathematical models Moisture Parameters Runoff Soil conservation Storms Technical Papers Watersheds |
title | Improved SCS-CN–Inspired Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20SCS-CN%E2%80%93Inspired%20Model&rft.jtitle=Journal%20of%20hydrologic%20engineering&rft.au=Suresh%20Babu,%20P&rft.date=2012-11-01&rft.volume=17&rft.issue=11&rft.spage=1164&rft.epage=1172&rft.pages=1164-1172&rft.issn=1084-0699&rft.eissn=1943-5584&rft_id=info:doi/10.1061/(ASCE)HE.1943-5584.0000435&rft_dat=%3Cproquest_cross%3E1864533173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855075107&rft_id=info:pmid/&rfr_iscdi=true |