Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon
Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3...
Gespeichert in:
Veröffentlicht in: | Optics letters 2016-04, Vol.41 (7), p.1664-1667 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1667 |
---|---|
container_issue | 7 |
container_start_page | 1664 |
container_title | Optics letters |
container_volume | 41 |
creator | Wan, Yating Li, Qiang Liu, Alan Y Gossard, Arthur C Bowers, John E Hu, Evelyn L Lau, Kei May |
description | Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics. |
doi_str_mv | 10.1364/OL.41.001664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864532071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864532071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-89a7f1dd2408d6c790b23423829e11b14c35e95bbcbddc97d20c1fc6cc0b0cfb3</originalsourceid><addsrcrecordid>eNqFkc1Kw0AQxxdRbK3ePMseK5i4sx9J91iKH4VALnoOye5Gokk23U2Q3rz6Tj6DD-GTGGn1KgzMYX78Z4YfQudAQmARv06TkENICEQRP0BTEEwGPJb8EE0J8CiQQtIJOvH-mRASxYwdowmNQVIGbIo2addXKq_rLe6GpjMaQ8i-3t7H-vxosLO2CXozDlzeD87gdbv0eDPkbT80gbY9birlbKAr_4Lr3Bvnsa6cUf0Y-OTsa4tti-fjdZfYV3WlbHuKjsq89uZs32fo8fbmYXUfJOnderVMAsWJ6IOFzOMStKacLHSkYkkKyjhlCyoNQAFcMWGkKApVaK1krClRUKpIKVIQVRZshua73M7ZzWB8nzWVV6au89bYwWewiLhglMTwPzpu54JLJkb0aoeOX3vvTJl1rmpyt82AZD8-sjTJOGQ7HyN-sU8eisboP_hXAPsG5C2H1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790454935</pqid></control><display><type>article</type><title>Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon</title><source>Optica Publishing Group Journals</source><creator>Wan, Yating ; Li, Qiang ; Liu, Alan Y ; Gossard, Arthur C ; Bowers, John E ; Hu, Evelyn L ; Lau, Kei May</creator><creatorcontrib>Wan, Yating ; Li, Qiang ; Liu, Alan Y ; Gossard, Arthur C ; Bowers, John E ; Hu, Evelyn L ; Lau, Kei May</creatorcontrib><description>Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.41.001664</identifier><identifier>PMID: 27192313</identifier><language>eng</language><publisher>United States</publisher><subject>Dislocations ; Indium arsenides ; Lasers ; Photonics ; Quantum dots ; Silicon ; Silicon substrates ; Thresholds</subject><ispartof>Optics letters, 2016-04, Vol.41 (7), p.1664-1667</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-89a7f1dd2408d6c790b23423829e11b14c35e95bbcbddc97d20c1fc6cc0b0cfb3</citedby><cites>FETCH-LOGICAL-c405t-89a7f1dd2408d6c790b23423829e11b14c35e95bbcbddc97d20c1fc6cc0b0cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27192313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Yating</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Liu, Alan Y</creatorcontrib><creatorcontrib>Gossard, Arthur C</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Hu, Evelyn L</creatorcontrib><creatorcontrib>Lau, Kei May</creatorcontrib><title>Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics.</description><subject>Dislocations</subject><subject>Indium arsenides</subject><subject>Lasers</subject><subject>Photonics</subject><subject>Quantum dots</subject><subject>Silicon</subject><subject>Silicon substrates</subject><subject>Thresholds</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1Kw0AQxxdRbK3ePMseK5i4sx9J91iKH4VALnoOye5Gokk23U2Q3rz6Tj6DD-GTGGn1KgzMYX78Z4YfQudAQmARv06TkENICEQRP0BTEEwGPJb8EE0J8CiQQtIJOvH-mRASxYwdowmNQVIGbIo2addXKq_rLe6GpjMaQ8i-3t7H-vxosLO2CXozDlzeD87gdbv0eDPkbT80gbY9birlbKAr_4Lr3Bvnsa6cUf0Y-OTsa4tti-fjdZfYV3WlbHuKjsq89uZs32fo8fbmYXUfJOnderVMAsWJ6IOFzOMStKacLHSkYkkKyjhlCyoNQAFcMWGkKApVaK1krClRUKpIKVIQVRZshua73M7ZzWB8nzWVV6au89bYwWewiLhglMTwPzpu54JLJkb0aoeOX3vvTJl1rmpyt82AZD8-sjTJOGQ7HyN-sU8eisboP_hXAPsG5C2H1A</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Wan, Yating</creator><creator>Li, Qiang</creator><creator>Liu, Alan Y</creator><creator>Gossard, Arthur C</creator><creator>Bowers, John E</creator><creator>Hu, Evelyn L</creator><creator>Lau, Kei May</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon</title><author>Wan, Yating ; Li, Qiang ; Liu, Alan Y ; Gossard, Arthur C ; Bowers, John E ; Hu, Evelyn L ; Lau, Kei May</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-89a7f1dd2408d6c790b23423829e11b14c35e95bbcbddc97d20c1fc6cc0b0cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Dislocations</topic><topic>Indium arsenides</topic><topic>Lasers</topic><topic>Photonics</topic><topic>Quantum dots</topic><topic>Silicon</topic><topic>Silicon substrates</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Yating</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Liu, Alan Y</creatorcontrib><creatorcontrib>Gossard, Arthur C</creatorcontrib><creatorcontrib>Bowers, John E</creatorcontrib><creatorcontrib>Hu, Evelyn L</creatorcontrib><creatorcontrib>Lau, Kei May</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Yating</au><au>Li, Qiang</au><au>Liu, Alan Y</au><au>Gossard, Arthur C</au><au>Bowers, John E</au><au>Hu, Evelyn L</au><au>Lau, Kei May</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>41</volume><issue>7</issue><spage>1664</spage><epage>1667</epage><pages>1664-1667</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Direct integration of high-performance laser diodes on silicon will dramatically transform the world of photonics, expediting the progress toward low-cost and compact photonic integrated circuits (PICs) on the mainstream silicon platform. Here, we report, to the best of our knowledge, the first 1.3 μm room-temperature continuous-wave InAs quantum-dot micro-disk lasers epitaxially grown on industrial-compatible Si (001) substrates without offcut. The lasing threshold is as low as hundreds of microwatts, similar to the thresholds of identical lasers grown on a GaAs substrate. The heteroepitaxial structure employed here does not require the use of an absorptive germanium buffer and/or dislocation filter layers, both of which impede the efficient coupling of light from the laser active regions to silicon waveguides. This allows for full compatibility with the extensive silicon-on-insulator (SOI) technology. The large-area virtual GaAs (on Si) substrates can be directly adopted in various mature in-plane laser configurations, both optically and electrically. Thus, this demonstration represents a major advancement toward the commercial success of fully integrated silicon photonics.</abstract><cop>United States</cop><pmid>27192313</pmid><doi>10.1364/OL.41.001664</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2016-04, Vol.41 (7), p.1664-1667 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864532071 |
source | Optica Publishing Group Journals |
subjects | Dislocations Indium arsenides Lasers Photonics Quantum dots Silicon Silicon substrates Thresholds |
title | Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20pumped%201.3%E2%80%89%E2%80%89%CE%BCm%20room-temperature%20InAs%20quantum-dot%20micro-disk%20lasers%20directly%20grown%20on%20(001)%20silicon&rft.jtitle=Optics%20letters&rft.au=Wan,%20Yating&rft.date=2016-04-01&rft.volume=41&rft.issue=7&rft.spage=1664&rft.epage=1667&rft.pages=1664-1667&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.41.001664&rft_dat=%3Cproquest_cross%3E1864532071%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790454935&rft_id=info:pmid/27192313&rfr_iscdi=true |