ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA S[cursive l](2,C) II
In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra s[cursive l](2,C) and the homogenized Verma modules. The aim of this paper is to study the homogenization [formula omitted: see PDF] B of the Bernstein-Gelfand-Gelfand category [formula omitted: see PDF] of s[cursi...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2017-01, Vol.59 (1), p.189-219 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 219 |
---|---|
container_issue | 1 |
container_start_page | 189 |
container_title | Glasgow mathematical journal |
container_volume | 59 |
creator | MARTÃNEZ-VILLA, ROBERTO |
description | In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra s[cursive l](2,C) and the homogenized Verma modules. The aim of this paper is to study the homogenization [formula omitted: see PDF] B of the Bernstein-Gelfand-Gelfand category [formula omitted: see PDF] of s[cursive l](2,C), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories [formula omitted: see PDF] B and [formula omitted: see PDF] as well as, between the derived categories [formula omitted: see PDF] b ( [formula omitted: see PDF] B ) and [formula omitted: see PDF] b ( [formula omitted: see PDF] ). |
doi_str_mv | 10.1017/S0017089516000112 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864531141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864531141</sourcerecordid><originalsourceid>FETCH-LOGICAL-p131t-c4100e82215e56e3b287e30ea8a67397a9b4a314b497dc31a791a7676960a5573</originalsourceid><addsrcrecordid>eNpdjk9Lw0AQxRdRsFY_gLcFLxWM7mT_ZY-xbtNAmhVbRRQpm7hCS2xrtvHzu1Xx4GFm3pv3YxiEToFcAgF5NSWhk0RxECRIiPdQD5hQESfqcR_1dnG0yw_RkffLYGlwPTQxJZ6NNR6bicl0mT_pG6zLB12Y27zMcFpk-vouxWb0TRW5_ltNn-uu9YtPh5uXQXwxPMd5fowO3mzj3cnv7KP7kZ4Nx1FhsnyYFtEGKGyjmgEhLolj4I4LR6s4kY4SZxMrJFXSqopZCqxiSr7WFKxUoYQUShDLuaR9NPi5u2nXH53z2_n7wteuaezKrTs_h0QwTgEYBPTsH7pcd-0qfBcoxmIleULpF3mOVVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844297583</pqid></control><display><type>article</type><title>ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA S[cursive l](2,C) II</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>MARTÃNEZ-VILLA, ROBERTO</creator><creatorcontrib>MARTÃNEZ-VILLA, ROBERTO</creatorcontrib><description>In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra s[cursive l](2,C) and the homogenized Verma modules. The aim of this paper is to study the homogenization [formula omitted: see PDF] B of the Bernstein-Gelfand-Gelfand category [formula omitted: see PDF] of s[cursive l](2,C), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories [formula omitted: see PDF] B and [formula omitted: see PDF] as well as, between the derived categories [formula omitted: see PDF] b ( [formula omitted: see PDF] B ) and [formula omitted: see PDF] b ( [formula omitted: see PDF] ).</description><identifier>ISSN: 0017-0895</identifier><identifier>EISSN: 1469-509X</identifier><identifier>DOI: 10.1017/S0017089516000112</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Algebra ; Categories ; Homogenization ; Homogenizing ; Lie groups ; Mathematical analysis ; Modules ; Rings (mathematics)</subject><ispartof>Glasgow mathematical journal, 2017-01, Vol.59 (1), p.189-219</ispartof><rights>Copyright © Glasgow Mathematical Journal Trust 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>MARTÃNEZ-VILLA, ROBERTO</creatorcontrib><title>ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA S[cursive l](2,C) II</title><title>Glasgow mathematical journal</title><description>In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra s[cursive l](2,C) and the homogenized Verma modules. The aim of this paper is to study the homogenization [formula omitted: see PDF] B of the Bernstein-Gelfand-Gelfand category [formula omitted: see PDF] of s[cursive l](2,C), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories [formula omitted: see PDF] B and [formula omitted: see PDF] as well as, between the derived categories [formula omitted: see PDF] b ( [formula omitted: see PDF] B ) and [formula omitted: see PDF] b ( [formula omitted: see PDF] ).</description><subject>Algebra</subject><subject>Categories</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Rings (mathematics)</subject><issn>0017-0895</issn><issn>1469-509X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdjk9Lw0AQxRdRsFY_gLcFLxWM7mT_ZY-xbtNAmhVbRRQpm7hCS2xrtvHzu1Xx4GFm3pv3YxiEToFcAgF5NSWhk0RxECRIiPdQD5hQESfqcR_1dnG0yw_RkffLYGlwPTQxJZ6NNR6bicl0mT_pG6zLB12Y27zMcFpk-vouxWb0TRW5_ltNn-uu9YtPh5uXQXwxPMd5fowO3mzj3cnv7KP7kZ4Nx1FhsnyYFtEGKGyjmgEhLolj4I4LR6s4kY4SZxMrJFXSqopZCqxiSr7WFKxUoYQUShDLuaR9NPi5u2nXH53z2_n7wteuaezKrTs_h0QwTgEYBPTsH7pcd-0qfBcoxmIleULpF3mOVVI</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>MARTÃNEZ-VILLA, ROBERTO</creator><general>Cambridge University Press</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170101</creationdate><title>ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA S[cursive l](2,C) II</title><author>MARTÃNEZ-VILLA, ROBERTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p131t-c4100e82215e56e3b287e30ea8a67397a9b4a314b497dc31a791a7676960a5573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Categories</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MARTÃNEZ-VILLA, ROBERTO</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Glasgow mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MARTÃNEZ-VILLA, ROBERTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA S[cursive l](2,C) II</atitle><jtitle>Glasgow mathematical journal</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>59</volume><issue>1</issue><spage>189</spage><epage>219</epage><pages>189-219</pages><issn>0017-0895</issn><eissn>1469-509X</eissn><abstract>In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra s[cursive l](2,C) and the homogenized Verma modules. The aim of this paper is to study the homogenization [formula omitted: see PDF] B of the Bernstein-Gelfand-Gelfand category [formula omitted: see PDF] of s[cursive l](2,C), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories [formula omitted: see PDF] B and [formula omitted: see PDF] as well as, between the derived categories [formula omitted: see PDF] b ( [formula omitted: see PDF] B ) and [formula omitted: see PDF] b ( [formula omitted: see PDF] ).</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0017089516000112</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-0895 |
ispartof | Glasgow mathematical journal, 2017-01, Vol.59 (1), p.189-219 |
issn | 0017-0895 1469-509X |
language | eng |
recordid | cdi_proquest_miscellaneous_1864531141 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete |
subjects | Algebra Categories Homogenization Homogenizing Lie groups Mathematical analysis Modules Rings (mathematics) |
title | ON THE HOMOGENIZED ENVELOPING ALGEBRA OF THE LIE ALGEBRA S[cursive l](2,C) II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20HOMOGENIZED%20ENVELOPING%20ALGEBRA%20OF%20THE%20LIE%20ALGEBRA%20S%5Bcursive%20l%5D(2,C)%20II&rft.jtitle=Glasgow%20mathematical%20journal&rft.au=MART%C3%83NEZ-VILLA,%20ROBERTO&rft.date=2017-01-01&rft.volume=59&rft.issue=1&rft.spage=189&rft.epage=219&rft.pages=189-219&rft.issn=0017-0895&rft.eissn=1469-509X&rft_id=info:doi/10.1017/S0017089516000112&rft_dat=%3Cproquest%3E1864531141%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844297583&rft_id=info:pmid/&rfr_iscdi=true |