Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers

[Display omitted] •Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%. A simple non-isoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2016-11, Vol.84, p.784-798
Hauptverfasser: Li, Suqing, Sang, Zhihui, Zhao, Jingbo, Zhang, Zhiyuan, Cheng, Jue, Zhang, Junying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 798
container_issue
container_start_page 784
container_title European polymer journal
container_volume 84
creator Li, Suqing
Sang, Zhihui
Zhao, Jingbo
Zhang, Zhiyuan
Cheng, Jue
Zhang, Junying
description [Display omitted] •Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%. A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.
doi_str_mv 10.1016/j.eurpolymj.2016.08.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864527924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305716308965</els_id><sourcerecordid>1864527924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</originalsourceid><addsrcrecordid>eNqFkUFr3TAQhEVIoS8v-Q0V5JIe7K4s27KPITRJIdBDk7OQ5RWRkS1HsgPur6_MCz300tPC7KdhVkPIFwY5A1Z_G3Jcw-zdNg55kYQcmhxAnJEDawTPWFtW5-QAwMqMQyU-k4sYB0gEr_mBvP3apuUVo41UTT2dg58xLBYj9YZOfsps9HpTk1qQKmfnV7VYTXXY4qKcs79V55AmgzD62am4L_csN7hrdA1pqgm_UtyXfsQQL8kno1zEq495JC_335_vHrOnnw8_7m6fMs1FvWRFXaIyCkxdaxSI3JRcFQZY2yUZOTZ1WYquVUpgz7iBrtXATNeovsIKWn4kNyffdNPbinGRo40anUt5_BolSwZVIdqiTOj1P-jg1zCldJK1nBeVqBpIlDhROvgYAxo5BzuqsEkGcq9CDvJvFXKvQkIj948-ktvTS0z3vlsMMmqLk8beBtSL7L39r8cfDsGbBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933257580</pqid></control><display><type>article</type><title>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Suqing ; Sang, Zhihui ; Zhao, Jingbo ; Zhang, Zhiyuan ; Cheng, Jue ; Zhang, Junying</creator><creatorcontrib>Li, Suqing ; Sang, Zhihui ; Zhao, Jingbo ; Zhang, Zhiyuan ; Cheng, Jue ; Zhang, Junying</creatorcontrib><description>[Display omitted] •Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%. A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2016.08.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aliphatic compounds ; Atomic force microscopy ; Differential scanning calorimetry ; Diurethanediol ; Dynamic mechanical analysis ; Elastomers ; Elongation ; Heat measurement ; Infrared radiation ; Mechanical analysis ; Mechanical properties ; NMR ; Non-isocyanate route ; Nuclear magnetic resonance ; Polyetherurethane ; Polytetramethylene glycol ; Polyurethane ; Resilience ; Scattering ; Synthesis ; Tensile strength ; Tensile tests ; Thermal analysis ; Thermal properties ; Thermodynamic properties ; Thermogravimetric analysis ; Thermoplastic polyurethane elastomers ; Thermoplastics ; Transurethane polycondensation</subject><ispartof>European polymer journal, 2016-11, Vol.84, p.784-798</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</citedby><cites>FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014305716308965$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, Suqing</creatorcontrib><creatorcontrib>Sang, Zhihui</creatorcontrib><creatorcontrib>Zhao, Jingbo</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Jue</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><title>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</title><title>European polymer journal</title><description>[Display omitted] •Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%. A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.</description><subject>Aliphatic compounds</subject><subject>Atomic force microscopy</subject><subject>Differential scanning calorimetry</subject><subject>Diurethanediol</subject><subject>Dynamic mechanical analysis</subject><subject>Elastomers</subject><subject>Elongation</subject><subject>Heat measurement</subject><subject>Infrared radiation</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Non-isocyanate route</subject><subject>Nuclear magnetic resonance</subject><subject>Polyetherurethane</subject><subject>Polytetramethylene glycol</subject><subject>Polyurethane</subject><subject>Resilience</subject><subject>Scattering</subject><subject>Synthesis</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thermoplastic polyurethane elastomers</subject><subject>Thermoplastics</subject><subject>Transurethane polycondensation</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3TAQhEVIoS8v-Q0V5JIe7K4s27KPITRJIdBDk7OQ5RWRkS1HsgPur6_MCz300tPC7KdhVkPIFwY5A1Z_G3Jcw-zdNg55kYQcmhxAnJEDawTPWFtW5-QAwMqMQyU-k4sYB0gEr_mBvP3apuUVo41UTT2dg58xLBYj9YZOfsps9HpTk1qQKmfnV7VYTXXY4qKcs79V55AmgzD62am4L_csN7hrdA1pqgm_UtyXfsQQL8kno1zEq495JC_335_vHrOnnw8_7m6fMs1FvWRFXaIyCkxdaxSI3JRcFQZY2yUZOTZ1WYquVUpgz7iBrtXATNeovsIKWn4kNyffdNPbinGRo40anUt5_BolSwZVIdqiTOj1P-jg1zCldJK1nBeVqBpIlDhROvgYAxo5BzuqsEkGcq9CDvJvFXKvQkIj948-ktvTS0z3vlsMMmqLk8beBtSL7L39r8cfDsGbBQ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Li, Suqing</creator><creator>Sang, Zhihui</creator><creator>Zhao, Jingbo</creator><creator>Zhang, Zhiyuan</creator><creator>Cheng, Jue</creator><creator>Zhang, Junying</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201611</creationdate><title>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</title><author>Li, Suqing ; Sang, Zhihui ; Zhao, Jingbo ; Zhang, Zhiyuan ; Cheng, Jue ; Zhang, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aliphatic compounds</topic><topic>Atomic force microscopy</topic><topic>Differential scanning calorimetry</topic><topic>Diurethanediol</topic><topic>Dynamic mechanical analysis</topic><topic>Elastomers</topic><topic>Elongation</topic><topic>Heat measurement</topic><topic>Infrared radiation</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Non-isocyanate route</topic><topic>Nuclear magnetic resonance</topic><topic>Polyetherurethane</topic><topic>Polytetramethylene glycol</topic><topic>Polyurethane</topic><topic>Resilience</topic><topic>Scattering</topic><topic>Synthesis</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thermoplastic polyurethane elastomers</topic><topic>Thermoplastics</topic><topic>Transurethane polycondensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Suqing</creatorcontrib><creatorcontrib>Sang, Zhihui</creatorcontrib><creatorcontrib>Zhao, Jingbo</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Jue</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Suqing</au><au>Sang, Zhihui</au><au>Zhao, Jingbo</au><au>Zhang, Zhiyuan</au><au>Cheng, Jue</au><au>Zhang, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</atitle><jtitle>European polymer journal</jtitle><date>2016-11</date><risdate>2016</risdate><volume>84</volume><spage>784</spage><epage>798</epage><pages>784-798</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%. A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2016.08.007</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2016-11, Vol.84, p.784-798
issn 0014-3057
1873-1945
language eng
recordid cdi_proquest_miscellaneous_1864527924
source Elsevier ScienceDirect Journals Complete
subjects Aliphatic compounds
Atomic force microscopy
Differential scanning calorimetry
Diurethanediol
Dynamic mechanical analysis
Elastomers
Elongation
Heat measurement
Infrared radiation
Mechanical analysis
Mechanical properties
NMR
Non-isocyanate route
Nuclear magnetic resonance
Polyetherurethane
Polytetramethylene glycol
Polyurethane
Resilience
Scattering
Synthesis
Tensile strength
Tensile tests
Thermal analysis
Thermal properties
Thermodynamic properties
Thermogravimetric analysis
Thermoplastic polyurethane elastomers
Thermoplastics
Transurethane polycondensation
title Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20properties%20of%20non-isocyanate%20aliphatic%20crystallizable%20thermoplastic%20poly(ether%20urethane)%20elastomers&rft.jtitle=European%20polymer%20journal&rft.au=Li,%20Suqing&rft.date=2016-11&rft.volume=84&rft.spage=784&rft.epage=798&rft.pages=784-798&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2016.08.007&rft_dat=%3Cproquest_cross%3E1864527924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933257580&rft_id=info:pmid/&rft_els_id=S0014305716308965&rfr_iscdi=true