Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers
[Display omitted] •Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%. A simple non-isoc...
Gespeichert in:
Veröffentlicht in: | European polymer journal 2016-11, Vol.84, p.784-798 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 798 |
---|---|
container_issue | |
container_start_page | 784 |
container_title | European polymer journal |
container_volume | 84 |
creator | Li, Suqing Sang, Zhihui Zhao, Jingbo Zhang, Zhiyuan Cheng, Jue Zhang, Junying |
description | [Display omitted]
•Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%.
A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route. |
doi_str_mv | 10.1016/j.eurpolymj.2016.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1864527924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305716308965</els_id><sourcerecordid>1864527924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</originalsourceid><addsrcrecordid>eNqFkUFr3TAQhEVIoS8v-Q0V5JIe7K4s27KPITRJIdBDk7OQ5RWRkS1HsgPur6_MCz300tPC7KdhVkPIFwY5A1Z_G3Jcw-zdNg55kYQcmhxAnJEDawTPWFtW5-QAwMqMQyU-k4sYB0gEr_mBvP3apuUVo41UTT2dg58xLBYj9YZOfsps9HpTk1qQKmfnV7VYTXXY4qKcs79V55AmgzD62am4L_csN7hrdA1pqgm_UtyXfsQQL8kno1zEq495JC_335_vHrOnnw8_7m6fMs1FvWRFXaIyCkxdaxSI3JRcFQZY2yUZOTZ1WYquVUpgz7iBrtXATNeovsIKWn4kNyffdNPbinGRo40anUt5_BolSwZVIdqiTOj1P-jg1zCldJK1nBeVqBpIlDhROvgYAxo5BzuqsEkGcq9CDvJvFXKvQkIj948-ktvTS0z3vlsMMmqLk8beBtSL7L39r8cfDsGbBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933257580</pqid></control><display><type>article</type><title>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Suqing ; Sang, Zhihui ; Zhao, Jingbo ; Zhang, Zhiyuan ; Cheng, Jue ; Zhang, Junying</creator><creatorcontrib>Li, Suqing ; Sang, Zhihui ; Zhao, Jingbo ; Zhang, Zhiyuan ; Cheng, Jue ; Zhang, Junying</creatorcontrib><description>[Display omitted]
•Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%.
A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2016.08.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aliphatic compounds ; Atomic force microscopy ; Differential scanning calorimetry ; Diurethanediol ; Dynamic mechanical analysis ; Elastomers ; Elongation ; Heat measurement ; Infrared radiation ; Mechanical analysis ; Mechanical properties ; NMR ; Non-isocyanate route ; Nuclear magnetic resonance ; Polyetherurethane ; Polytetramethylene glycol ; Polyurethane ; Resilience ; Scattering ; Synthesis ; Tensile strength ; Tensile tests ; Thermal analysis ; Thermal properties ; Thermodynamic properties ; Thermogravimetric analysis ; Thermoplastic polyurethane elastomers ; Thermoplastics ; Transurethane polycondensation</subject><ispartof>European polymer journal, 2016-11, Vol.84, p.784-798</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</citedby><cites>FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014305716308965$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, Suqing</creatorcontrib><creatorcontrib>Sang, Zhihui</creatorcontrib><creatorcontrib>Zhao, Jingbo</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Jue</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><title>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</title><title>European polymer journal</title><description>[Display omitted]
•Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%.
A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.</description><subject>Aliphatic compounds</subject><subject>Atomic force microscopy</subject><subject>Differential scanning calorimetry</subject><subject>Diurethanediol</subject><subject>Dynamic mechanical analysis</subject><subject>Elastomers</subject><subject>Elongation</subject><subject>Heat measurement</subject><subject>Infrared radiation</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>NMR</subject><subject>Non-isocyanate route</subject><subject>Nuclear magnetic resonance</subject><subject>Polyetherurethane</subject><subject>Polytetramethylene glycol</subject><subject>Polyurethane</subject><subject>Resilience</subject><subject>Scattering</subject><subject>Synthesis</subject><subject>Tensile strength</subject><subject>Tensile tests</subject><subject>Thermal analysis</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermogravimetric analysis</subject><subject>Thermoplastic polyurethane elastomers</subject><subject>Thermoplastics</subject><subject>Transurethane polycondensation</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr3TAQhEVIoS8v-Q0V5JIe7K4s27KPITRJIdBDk7OQ5RWRkS1HsgPur6_MCz300tPC7KdhVkPIFwY5A1Z_G3Jcw-zdNg55kYQcmhxAnJEDawTPWFtW5-QAwMqMQyU-k4sYB0gEr_mBvP3apuUVo41UTT2dg58xLBYj9YZOfsps9HpTk1qQKmfnV7VYTXXY4qKcs79V55AmgzD62am4L_csN7hrdA1pqgm_UtyXfsQQL8kno1zEq495JC_335_vHrOnnw8_7m6fMs1FvWRFXaIyCkxdaxSI3JRcFQZY2yUZOTZ1WYquVUpgz7iBrtXATNeovsIKWn4kNyffdNPbinGRo40anUt5_BolSwZVIdqiTOj1P-jg1zCldJK1nBeVqBpIlDhROvgYAxo5BzuqsEkGcq9CDvJvFXKvQkIj948-ktvTS0z3vlsMMmqLk8beBtSL7L39r8cfDsGbBQ</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Li, Suqing</creator><creator>Sang, Zhihui</creator><creator>Zhao, Jingbo</creator><creator>Zhang, Zhiyuan</creator><creator>Cheng, Jue</creator><creator>Zhang, Junying</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201611</creationdate><title>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</title><author>Li, Suqing ; Sang, Zhihui ; Zhao, Jingbo ; Zhang, Zhiyuan ; Cheng, Jue ; Zhang, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-264eafa0f66ce7ee3f43a2f019bafae3e86447b9aa7ed13f0b9c01fb8ad5e5093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aliphatic compounds</topic><topic>Atomic force microscopy</topic><topic>Differential scanning calorimetry</topic><topic>Diurethanediol</topic><topic>Dynamic mechanical analysis</topic><topic>Elastomers</topic><topic>Elongation</topic><topic>Heat measurement</topic><topic>Infrared radiation</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>NMR</topic><topic>Non-isocyanate route</topic><topic>Nuclear magnetic resonance</topic><topic>Polyetherurethane</topic><topic>Polytetramethylene glycol</topic><topic>Polyurethane</topic><topic>Resilience</topic><topic>Scattering</topic><topic>Synthesis</topic><topic>Tensile strength</topic><topic>Tensile tests</topic><topic>Thermal analysis</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermogravimetric analysis</topic><topic>Thermoplastic polyurethane elastomers</topic><topic>Thermoplastics</topic><topic>Transurethane polycondensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Suqing</creatorcontrib><creatorcontrib>Sang, Zhihui</creatorcontrib><creatorcontrib>Zhao, Jingbo</creatorcontrib><creatorcontrib>Zhang, Zhiyuan</creatorcontrib><creatorcontrib>Cheng, Jue</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Suqing</au><au>Sang, Zhihui</au><au>Zhao, Jingbo</au><au>Zhang, Zhiyuan</au><au>Cheng, Jue</au><au>Zhang, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers</atitle><jtitle>European polymer journal</jtitle><date>2016-11</date><risdate>2016</risdate><volume>84</volume><spage>784</spage><epage>798</epage><pages>784-798</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted]
•Crystallizable TPU elastomers were prepared through a non-isocyanate route.•They were prepared by polymerizing a linear diurethanediol with PTMGs.•They exhibit melting temperature up to 161°C.•They show tensile strength up to 24MPa and resilience from 59% to 98%.
A simple non-isocyanate route synthesizing aliphatic thermoplastic polyurethane elastomers (TPUEs) with good thermal and mechanical properties is described. Melt transurethane co-polycondensation of a diurethanediol, i.e. bis(hydroxyethyl) hexanediurethane, with different poly(tetramethylene glycol)s was conducted, and a series of TPUEs were prepared. They were characterized by GPC, FT-IR, 1H NMR, wide-angle X-ray scattering, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, atomic force microscope, and tensile test. The TPUEs exhibited an Mn up to 40,000g/mol, an Mw up to 90,800g/mol, Tm from 125°C to 161°C, initial decomposition temperature at over 261°C, tensile strength up to 24MPa, elongation at break from 182% to 1476%, and resilience up to 98%. TPUEs with high Tm, good tensile strength, and high resilience were prepared through a non-isocyanate route.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2016.08.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-3057 |
ispartof | European polymer journal, 2016-11, Vol.84, p.784-798 |
issn | 0014-3057 1873-1945 |
language | eng |
recordid | cdi_proquest_miscellaneous_1864527924 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aliphatic compounds Atomic force microscopy Differential scanning calorimetry Diurethanediol Dynamic mechanical analysis Elastomers Elongation Heat measurement Infrared radiation Mechanical analysis Mechanical properties NMR Non-isocyanate route Nuclear magnetic resonance Polyetherurethane Polytetramethylene glycol Polyurethane Resilience Scattering Synthesis Tensile strength Tensile tests Thermal analysis Thermal properties Thermodynamic properties Thermogravimetric analysis Thermoplastic polyurethane elastomers Thermoplastics Transurethane polycondensation |
title | Synthesis and properties of non-isocyanate aliphatic crystallizable thermoplastic poly(ether urethane) elastomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20properties%20of%20non-isocyanate%20aliphatic%20crystallizable%20thermoplastic%20poly(ether%20urethane)%20elastomers&rft.jtitle=European%20polymer%20journal&rft.au=Li,%20Suqing&rft.date=2016-11&rft.volume=84&rft.spage=784&rft.epage=798&rft.pages=784-798&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2016.08.007&rft_dat=%3Cproquest_cross%3E1864527924%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933257580&rft_id=info:pmid/&rft_els_id=S0014305716308965&rfr_iscdi=true |