Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media

A three‐dimensional (3‐D) analysis of transport and macrodispersion at the Macrodispersion Experiment (MADE) site [Boggs et al., 1993] using the Fractional Advection‐Dispersion Equation (FADE) developed by Meerschaert et al. [1999, 2001] shows that the Levy dispersion process is scale dependent. Lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2002-09, Vol.38 (9), p.4-1-4-7
Hauptverfasser: Lu, Silong, Molz, Fred J., Fix, George J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4-7
container_issue 9
container_start_page 4-1
container_title Water resources research
container_volume 38
creator Lu, Silong
Molz, Fred J.
Fix, George J.
description A three‐dimensional (3‐D) analysis of transport and macrodispersion at the Macrodispersion Experiment (MADE) site [Boggs et al., 1993] using the Fractional Advection‐Dispersion Equation (FADE) developed by Meerschaert et al. [1999, 2001] shows that the Levy dispersion process is scale dependent. Levy dispersion may be superior to Gaussian dispersion on a sufficiently small scale; on larger scales, both theories are likely to suffer from the fact that because of depositional structures most flow fields display an evolving, nonstationary structure. Motion in such fields is advection‐dominated, displays a lot of memory and therefore is not modeled well by Markov random processes which underlie the derivation of both the Gaussian and Levy advection‐dispersion equations [Berkowitz et al., 2002]. To improve plume simulation of an advection‐dominated transport process, one would have to bring in more advective irregularity while simultaneously decreasing the Levy dispersion coefficient. Therefore, on a 3‐D basis, first‐order Levy dispersion has limitations similar to Gaussian dispersion. However, this and related theories, such as the continuous time random walk (CTRW) formalism, are in the early stages of development and thus may be fruitful areas for further research.
doi_str_mv 10.1029/2001WR000624
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18638667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18638667</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4063-28548f89f17f2089db686fc722de10dcad436d2c18639e6c80ffae81e710db4b3</originalsourceid><addsrcrecordid>eNp9kMtuUzEQhi1EJdLCjgfwihUHfIvts6wi2iJFLUpbUnVjOfZYmJ5b7ZNCnoJXxslBVVcsRjOa-f7RzI_Qe0o-UcLqz4wQul4RQiQTr9CM1kJUqlb8NZoRInhFea3eoOOcfxZQzKWaoT_f-pzjpgE8pL6kNuM-4Oxs6XgYoPPQuR2OHbbD0ERnx9h3B2b8ASUSQOVjC10ufdvgkKwbp9L6JzjUBcgDpD2B4XF7WIHHHnd23KYCDn3qtxm34KN9i46CbTK8-5dP0O3Zl5vFRbW8Ov-6OF1WVhDJK6bnQgddB6oCI7r2G6llcIoxD5R4Z73g0jNHteQ1SKdJCBY0BVWmG7HhJ-jDtLe8_biFPJo2ZgdNYzsox5i9UEupCvhxAl0qTiUIZkixtWlnKDF7181L1wvOJvxXbGD3X9asV4tVTRkvomoSxTzC72eRTQ-mXKDmZn15buj35f312R03K_4XxwaW0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18638667</pqid></control><display><type>article</type><title>Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media</title><source>Wiley Blackwell Single Titles</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Lu, Silong ; Molz, Fred J. ; Fix, George J.</creator><creatorcontrib>Lu, Silong ; Molz, Fred J. ; Fix, George J.</creatorcontrib><description>A three‐dimensional (3‐D) analysis of transport and macrodispersion at the Macrodispersion Experiment (MADE) site [Boggs et al., 1993] using the Fractional Advection‐Dispersion Equation (FADE) developed by Meerschaert et al. [1999, 2001] shows that the Levy dispersion process is scale dependent. Levy dispersion may be superior to Gaussian dispersion on a sufficiently small scale; on larger scales, both theories are likely to suffer from the fact that because of depositional structures most flow fields display an evolving, nonstationary structure. Motion in such fields is advection‐dominated, displays a lot of memory and therefore is not modeled well by Markov random processes which underlie the derivation of both the Gaussian and Levy advection‐dispersion equations [Berkowitz et al., 2002]. To improve plume simulation of an advection‐dominated transport process, one would have to bring in more advective irregularity while simultaneously decreasing the Levy dispersion coefficient. Therefore, on a 3‐D basis, first‐order Levy dispersion has limitations similar to Gaussian dispersion. However, this and related theories, such as the continuous time random walk (CTRW) formalism, are in the early stages of development and thus may be fruitful areas for further research.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2001WR000624</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>fractional dispersion ; levy processes ; scale-dependency ; transport</subject><ispartof>Water resources research, 2002-09, Vol.38 (9), p.4-1-4-7</ispartof><rights>Copyright 2002 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4063-28548f89f17f2089db686fc722de10dcad436d2c18639e6c80ffae81e710db4b3</citedby><cites>FETCH-LOGICAL-a4063-28548f89f17f2089db686fc722de10dcad436d2c18639e6c80ffae81e710db4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2001WR000624$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2001WR000624$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Lu, Silong</creatorcontrib><creatorcontrib>Molz, Fred J.</creatorcontrib><creatorcontrib>Fix, George J.</creatorcontrib><title>Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A three‐dimensional (3‐D) analysis of transport and macrodispersion at the Macrodispersion Experiment (MADE) site [Boggs et al., 1993] using the Fractional Advection‐Dispersion Equation (FADE) developed by Meerschaert et al. [1999, 2001] shows that the Levy dispersion process is scale dependent. Levy dispersion may be superior to Gaussian dispersion on a sufficiently small scale; on larger scales, both theories are likely to suffer from the fact that because of depositional structures most flow fields display an evolving, nonstationary structure. Motion in such fields is advection‐dominated, displays a lot of memory and therefore is not modeled well by Markov random processes which underlie the derivation of both the Gaussian and Levy advection‐dispersion equations [Berkowitz et al., 2002]. To improve plume simulation of an advection‐dominated transport process, one would have to bring in more advective irregularity while simultaneously decreasing the Levy dispersion coefficient. Therefore, on a 3‐D basis, first‐order Levy dispersion has limitations similar to Gaussian dispersion. However, this and related theories, such as the continuous time random walk (CTRW) formalism, are in the early stages of development and thus may be fruitful areas for further research.</description><subject>fractional dispersion</subject><subject>levy processes</subject><subject>scale-dependency</subject><subject>transport</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kMtuUzEQhi1EJdLCjgfwihUHfIvts6wi2iJFLUpbUnVjOfZYmJ5b7ZNCnoJXxslBVVcsRjOa-f7RzI_Qe0o-UcLqz4wQul4RQiQTr9CM1kJUqlb8NZoRInhFea3eoOOcfxZQzKWaoT_f-pzjpgE8pL6kNuM-4Oxs6XgYoPPQuR2OHbbD0ERnx9h3B2b8ASUSQOVjC10ufdvgkKwbp9L6JzjUBcgDpD2B4XF7WIHHHnd23KYCDn3qtxm34KN9i46CbTK8-5dP0O3Zl5vFRbW8Ov-6OF1WVhDJK6bnQgddB6oCI7r2G6llcIoxD5R4Z73g0jNHteQ1SKdJCBY0BVWmG7HhJ-jDtLe8_biFPJo2ZgdNYzsox5i9UEupCvhxAl0qTiUIZkixtWlnKDF7181L1wvOJvxXbGD3X9asV4tVTRkvomoSxTzC72eRTQ-mXKDmZn15buj35f312R03K_4XxwaW0w</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Lu, Silong</creator><creator>Molz, Fred J.</creator><creator>Fix, George J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>200209</creationdate><title>Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media</title><author>Lu, Silong ; Molz, Fred J. ; Fix, George J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4063-28548f89f17f2089db686fc722de10dcad436d2c18639e6c80ffae81e710db4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>fractional dispersion</topic><topic>levy processes</topic><topic>scale-dependency</topic><topic>transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Silong</creatorcontrib><creatorcontrib>Molz, Fred J.</creatorcontrib><creatorcontrib>Fix, George J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Silong</au><au>Molz, Fred J.</au><au>Fix, George J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2002-09</date><risdate>2002</risdate><volume>38</volume><issue>9</issue><spage>4-1</spage><epage>4-7</epage><pages>4-1-4-7</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A three‐dimensional (3‐D) analysis of transport and macrodispersion at the Macrodispersion Experiment (MADE) site [Boggs et al., 1993] using the Fractional Advection‐Dispersion Equation (FADE) developed by Meerschaert et al. [1999, 2001] shows that the Levy dispersion process is scale dependent. Levy dispersion may be superior to Gaussian dispersion on a sufficiently small scale; on larger scales, both theories are likely to suffer from the fact that because of depositional structures most flow fields display an evolving, nonstationary structure. Motion in such fields is advection‐dominated, displays a lot of memory and therefore is not modeled well by Markov random processes which underlie the derivation of both the Gaussian and Levy advection‐dispersion equations [Berkowitz et al., 2002]. To improve plume simulation of an advection‐dominated transport process, one would have to bring in more advective irregularity while simultaneously decreasing the Levy dispersion coefficient. Therefore, on a 3‐D basis, first‐order Levy dispersion has limitations similar to Gaussian dispersion. However, this and related theories, such as the continuous time random walk (CTRW) formalism, are in the early stages of development and thus may be fruitful areas for further research.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2001WR000624</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2002-09, Vol.38 (9), p.4-1-4-7
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_18638667
source Wiley Blackwell Single Titles; Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library
subjects fractional dispersion
levy processes
scale-dependency
transport
title Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Possible%20problems%20of%20scale%20dependency%20in%20applications%20of%20the%20three-dimensional%20fractional%20advection-dispersion%20equation%20to%20natural%20porous%20media&rft.jtitle=Water%20resources%20research&rft.au=Lu,%20Silong&rft.date=2002-09&rft.volume=38&rft.issue=9&rft.spage=4-1&rft.epage=4-7&rft.pages=4-1-4-7&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2001WR000624&rft_dat=%3Cproquest_cross%3E18638667%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18638667&rft_id=info:pmid/&rfr_iscdi=true