Structure and Dynamics of Thioguanine-modified Duplex DNA
Mercaptopurine and thioguanine, two of the most widely used antileukemic agents, exert their cytotoxic, therapeutic effects by being incorporated into DNA as deoxy-6-thioguanosine. However, the molecular mechanism(s) by which incorporation of these thiopurines into DNA translates into cytotoxicity i...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2003-01, Vol.278 (2), p.1005-1011 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mercaptopurine and thioguanine, two of the most widely used antileukemic agents, exert their cytotoxic, therapeutic effects
by being incorporated into DNA as deoxy-6-thioguanosine. However, the molecular mechanism(s) by which incorporation of these
thiopurines into DNA translates into cytotoxicity is unknown. The solution structure of thioguanine-modified duplex DNA presented
here shows that the effects of the modification on DNA structure were subtle and localized to the modified base pair. Specifically,
thioguanine existed in the keto form, formed weakened Watson-Crick hydrogen bonds with cytosine and caused a modest â¼10° opening
of the modified base pair toward the major groove. In contrast, thioguanine significantly altered base pair dynamics, causing
an â¼80-fold decrease in the base pair lifetime with cytosine compared with normal guanine. This perturbation was consistent
with the â¼6â°C decrease in DNA melting temperature of the modified oligonucleotide, the 1.13 ppm upfield shift of the thioguanine
imino proton resonance, and the large increase in the exchange rate of the thioguanine imino proton with water. Our studies
provide new mechanistic insight into the effects of thioguanine incorporation into DNA at the level of DNA structure and dynamics,
provide explanations for the effects of thioguanine incorporation on the activity of DNA-processing enzymes, and provide a
molecular basis for the specific recognition of thioguanine-substituted sites by proteins. These combined effects likely cooperate
to produce the cellular responses that underlie the therapeutic effects of thiopurines. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M204243200 |