Ultrathin transparent membranes for cellular barrier and co-culture models
Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells a...
Gespeichert in:
Veröffentlicht in: | Biofabrication 2017-02, Vol.9 (1), p.015019-015019 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 015019 |
---|---|
container_issue | 1 |
container_start_page | 015019 |
container_title | Biofabrication |
container_volume | 9 |
creator | Carter, Robert N Casillo, Stephanie M Mazzocchi, Andrea R DesOrmeaux, Jon-Paul S Roussie, James A Gaborski, Thomas R |
description | Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives. |
doi_str_mv | 10.1088/1758-5090/aa5ba7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1863220533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1863220533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaK46-rdk_QieLDupEn6cRFk8ZMFL-45pGnidmmbmrSC_96UrssK4mlmkjdv3rxB6BzDDYY0neOEpSGDDOZCsFwkB2i6ezrcyyfoxLkNQMxYjI_RJEoxBULZFL2sqs6Kbl02gY-Na4VVTRfUqs59qVygjQ2kqqq-EjbIhbWlsoFoikCaUPZV11sV1KZQlTtFR1pUTp1t4wytHu7fFk_h8vXxeXG3DCUD6EKVUwJYaVGAoimRXgclMi8o6EKxDHLJNMu0BkGYplSSmGQEKMgkiiWLGZmh25G37fNaFdLrtaLirS1rYb-4ESX__dOUa_5uPjkjCcEQe4KrLYE1H71yHa9LN-zoFza94ziNSRQBI8RDYYRKa5yzSu_GYODDCfjgMR885uMJfMvFvrxdw4_nHnA9AkrT8o3pbePd-o_v8g94rnnGMQfMAGe8LTT5BsYEnoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863220533</pqid></control><display><type>article</type><title>Ultrathin transparent membranes for cellular barrier and co-culture models</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Carter, Robert N ; Casillo, Stephanie M ; Mazzocchi, Andrea R ; DesOrmeaux, Jon-Paul S ; Roussie, James A ; Gaborski, Thomas R</creator><creatorcontrib>Carter, Robert N ; Casillo, Stephanie M ; Mazzocchi, Andrea R ; DesOrmeaux, Jon-Paul S ; Roussie, James A ; Gaborski, Thomas R</creatorcontrib><description>Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.</description><identifier>ISSN: 1758-5090</identifier><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/aa5ba7</identifier><identifier>PMID: 28140345</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>barrier model ; cell co-culture ; Cell Communication ; Cell Proliferation ; cell-cell interaction ; Cells, Cultured ; Coculture Techniques - instrumentation ; Human Umbilical Vein Endothelial Cells ; Humans ; membrane ; Membranes, Artificial ; Microscopy, Fluorescence ; Porosity ; porous thin film ; Silicon Dioxide - chemistry ; Stem Cells - cytology ; Stem Cells - metabolism</subject><ispartof>Biofabrication, 2017-02, Vol.9 (1), p.015019-015019</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</citedby><cites>FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/aa5ba7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28140345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Robert N</creatorcontrib><creatorcontrib>Casillo, Stephanie M</creatorcontrib><creatorcontrib>Mazzocchi, Andrea R</creatorcontrib><creatorcontrib>DesOrmeaux, Jon-Paul S</creatorcontrib><creatorcontrib>Roussie, James A</creatorcontrib><creatorcontrib>Gaborski, Thomas R</creatorcontrib><title>Ultrathin transparent membranes for cellular barrier and co-culture models</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.</description><subject>barrier model</subject><subject>cell co-culture</subject><subject>Cell Communication</subject><subject>Cell Proliferation</subject><subject>cell-cell interaction</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques - instrumentation</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>membrane</subject><subject>Membranes, Artificial</subject><subject>Microscopy, Fluorescence</subject><subject>Porosity</subject><subject>porous thin film</subject><subject>Silicon Dioxide - chemistry</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><issn>1758-5090</issn><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1LxDAQDaK46-rdk_QieLDupEn6cRFk8ZMFL-45pGnidmmbmrSC_96UrssK4mlmkjdv3rxB6BzDDYY0neOEpSGDDOZCsFwkB2i6ezrcyyfoxLkNQMxYjI_RJEoxBULZFL2sqs6Kbl02gY-Na4VVTRfUqs59qVygjQ2kqqq-EjbIhbWlsoFoikCaUPZV11sV1KZQlTtFR1pUTp1t4wytHu7fFk_h8vXxeXG3DCUD6EKVUwJYaVGAoimRXgclMi8o6EKxDHLJNMu0BkGYplSSmGQEKMgkiiWLGZmh25G37fNaFdLrtaLirS1rYb-4ESX__dOUa_5uPjkjCcEQe4KrLYE1H71yHa9LN-zoFza94ziNSRQBI8RDYYRKa5yzSu_GYODDCfjgMR885uMJfMvFvrxdw4_nHnA9AkrT8o3pbePd-o_v8g94rnnGMQfMAGe8LTT5BsYEnoc</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Carter, Robert N</creator><creator>Casillo, Stephanie M</creator><creator>Mazzocchi, Andrea R</creator><creator>DesOrmeaux, Jon-Paul S</creator><creator>Roussie, James A</creator><creator>Gaborski, Thomas R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170214</creationdate><title>Ultrathin transparent membranes for cellular barrier and co-culture models</title><author>Carter, Robert N ; Casillo, Stephanie M ; Mazzocchi, Andrea R ; DesOrmeaux, Jon-Paul S ; Roussie, James A ; Gaborski, Thomas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>barrier model</topic><topic>cell co-culture</topic><topic>Cell Communication</topic><topic>Cell Proliferation</topic><topic>cell-cell interaction</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques - instrumentation</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>membrane</topic><topic>Membranes, Artificial</topic><topic>Microscopy, Fluorescence</topic><topic>Porosity</topic><topic>porous thin film</topic><topic>Silicon Dioxide - chemistry</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Robert N</creatorcontrib><creatorcontrib>Casillo, Stephanie M</creatorcontrib><creatorcontrib>Mazzocchi, Andrea R</creatorcontrib><creatorcontrib>DesOrmeaux, Jon-Paul S</creatorcontrib><creatorcontrib>Roussie, James A</creatorcontrib><creatorcontrib>Gaborski, Thomas R</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Robert N</au><au>Casillo, Stephanie M</au><au>Mazzocchi, Andrea R</au><au>DesOrmeaux, Jon-Paul S</au><au>Roussie, James A</au><au>Gaborski, Thomas R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin transparent membranes for cellular barrier and co-culture models</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>015019</spage><epage>015019</epage><pages>015019-015019</pages><issn>1758-5090</issn><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28140345</pmid><doi>10.1088/1758-5090/aa5ba7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-5090 |
ispartof | Biofabrication, 2017-02, Vol.9 (1), p.015019-015019 |
issn | 1758-5090 1758-5082 1758-5090 |
language | eng |
recordid | cdi_proquest_miscellaneous_1863220533 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | barrier model cell co-culture Cell Communication Cell Proliferation cell-cell interaction Cells, Cultured Coculture Techniques - instrumentation Human Umbilical Vein Endothelial Cells Humans membrane Membranes, Artificial Microscopy, Fluorescence Porosity porous thin film Silicon Dioxide - chemistry Stem Cells - cytology Stem Cells - metabolism |
title | Ultrathin transparent membranes for cellular barrier and co-culture models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20transparent%20membranes%20for%20cellular%20barrier%20and%20co-culture%20models&rft.jtitle=Biofabrication&rft.au=Carter,%20Robert%20N&rft.date=2017-02-14&rft.volume=9&rft.issue=1&rft.spage=015019&rft.epage=015019&rft.pages=015019-015019&rft.issn=1758-5090&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/aa5ba7&rft_dat=%3Cproquest_pubme%3E1863220533%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863220533&rft_id=info:pmid/28140345&rfr_iscdi=true |