Ultrathin transparent membranes for cellular barrier and co-culture models

Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biofabrication 2017-02, Vol.9 (1), p.015019-015019
Hauptverfasser: Carter, Robert N, Casillo, Stephanie M, Mazzocchi, Andrea R, DesOrmeaux, Jon-Paul S, Roussie, James A, Gaborski, Thomas R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015019
container_issue 1
container_start_page 015019
container_title Biofabrication
container_volume 9
creator Carter, Robert N
Casillo, Stephanie M
Mazzocchi, Andrea R
DesOrmeaux, Jon-Paul S
Roussie, James A
Gaborski, Thomas R
description Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.
doi_str_mv 10.1088/1758-5090/aa5ba7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1863220533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1863220533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaK46-rdk_QieLDupEn6cRFk8ZMFL-45pGnidmmbmrSC_96UrssK4mlmkjdv3rxB6BzDDYY0neOEpSGDDOZCsFwkB2i6ezrcyyfoxLkNQMxYjI_RJEoxBULZFL2sqs6Kbl02gY-Na4VVTRfUqs59qVygjQ2kqqq-EjbIhbWlsoFoikCaUPZV11sV1KZQlTtFR1pUTp1t4wytHu7fFk_h8vXxeXG3DCUD6EKVUwJYaVGAoimRXgclMi8o6EKxDHLJNMu0BkGYplSSmGQEKMgkiiWLGZmh25G37fNaFdLrtaLirS1rYb-4ESX__dOUa_5uPjkjCcEQe4KrLYE1H71yHa9LN-zoFza94ziNSRQBI8RDYYRKa5yzSu_GYODDCfjgMR885uMJfMvFvrxdw4_nHnA9AkrT8o3pbePd-o_v8g94rnnGMQfMAGe8LTT5BsYEnoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863220533</pqid></control><display><type>article</type><title>Ultrathin transparent membranes for cellular barrier and co-culture models</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Carter, Robert N ; Casillo, Stephanie M ; Mazzocchi, Andrea R ; DesOrmeaux, Jon-Paul S ; Roussie, James A ; Gaborski, Thomas R</creator><creatorcontrib>Carter, Robert N ; Casillo, Stephanie M ; Mazzocchi, Andrea R ; DesOrmeaux, Jon-Paul S ; Roussie, James A ; Gaborski, Thomas R</creatorcontrib><description>Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.</description><identifier>ISSN: 1758-5090</identifier><identifier>ISSN: 1758-5082</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/aa5ba7</identifier><identifier>PMID: 28140345</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>barrier model ; cell co-culture ; Cell Communication ; Cell Proliferation ; cell-cell interaction ; Cells, Cultured ; Coculture Techniques - instrumentation ; Human Umbilical Vein Endothelial Cells ; Humans ; membrane ; Membranes, Artificial ; Microscopy, Fluorescence ; Porosity ; porous thin film ; Silicon Dioxide - chemistry ; Stem Cells - cytology ; Stem Cells - metabolism</subject><ispartof>Biofabrication, 2017-02, Vol.9 (1), p.015019-015019</ispartof><rights>2017 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</citedby><cites>FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/aa5ba7/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28140345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Robert N</creatorcontrib><creatorcontrib>Casillo, Stephanie M</creatorcontrib><creatorcontrib>Mazzocchi, Andrea R</creatorcontrib><creatorcontrib>DesOrmeaux, Jon-Paul S</creatorcontrib><creatorcontrib>Roussie, James A</creatorcontrib><creatorcontrib>Gaborski, Thomas R</creatorcontrib><title>Ultrathin transparent membranes for cellular barrier and co-culture models</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.</description><subject>barrier model</subject><subject>cell co-culture</subject><subject>Cell Communication</subject><subject>Cell Proliferation</subject><subject>cell-cell interaction</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques - instrumentation</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>membrane</subject><subject>Membranes, Artificial</subject><subject>Microscopy, Fluorescence</subject><subject>Porosity</subject><subject>porous thin film</subject><subject>Silicon Dioxide - chemistry</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><issn>1758-5090</issn><issn>1758-5082</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp9UU1LxDAQDaK46-rdk_QieLDupEn6cRFk8ZMFL-45pGnidmmbmrSC_96UrssK4mlmkjdv3rxB6BzDDYY0neOEpSGDDOZCsFwkB2i6ezrcyyfoxLkNQMxYjI_RJEoxBULZFL2sqs6Kbl02gY-Na4VVTRfUqs59qVygjQ2kqqq-EjbIhbWlsoFoikCaUPZV11sV1KZQlTtFR1pUTp1t4wytHu7fFk_h8vXxeXG3DCUD6EKVUwJYaVGAoimRXgclMi8o6EKxDHLJNMu0BkGYplSSmGQEKMgkiiWLGZmh25G37fNaFdLrtaLirS1rYb-4ESX__dOUa_5uPjkjCcEQe4KrLYE1H71yHa9LN-zoFza94ziNSRQBI8RDYYRKa5yzSu_GYODDCfjgMR885uMJfMvFvrxdw4_nHnA9AkrT8o3pbePd-o_v8g94rnnGMQfMAGe8LTT5BsYEnoc</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Carter, Robert N</creator><creator>Casillo, Stephanie M</creator><creator>Mazzocchi, Andrea R</creator><creator>DesOrmeaux, Jon-Paul S</creator><creator>Roussie, James A</creator><creator>Gaborski, Thomas R</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170214</creationdate><title>Ultrathin transparent membranes for cellular barrier and co-culture models</title><author>Carter, Robert N ; Casillo, Stephanie M ; Mazzocchi, Andrea R ; DesOrmeaux, Jon-Paul S ; Roussie, James A ; Gaborski, Thomas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-eb4301efad0e483c03443cbd40fde590bc5f59ff0a35f44c36393040c726c5653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>barrier model</topic><topic>cell co-culture</topic><topic>Cell Communication</topic><topic>Cell Proliferation</topic><topic>cell-cell interaction</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques - instrumentation</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>membrane</topic><topic>Membranes, Artificial</topic><topic>Microscopy, Fluorescence</topic><topic>Porosity</topic><topic>porous thin film</topic><topic>Silicon Dioxide - chemistry</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Robert N</creatorcontrib><creatorcontrib>Casillo, Stephanie M</creatorcontrib><creatorcontrib>Mazzocchi, Andrea R</creatorcontrib><creatorcontrib>DesOrmeaux, Jon-Paul S</creatorcontrib><creatorcontrib>Roussie, James A</creatorcontrib><creatorcontrib>Gaborski, Thomas R</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Robert N</au><au>Casillo, Stephanie M</au><au>Mazzocchi, Andrea R</au><au>DesOrmeaux, Jon-Paul S</au><au>Roussie, James A</au><au>Gaborski, Thomas R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin transparent membranes for cellular barrier and co-culture models</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>015019</spage><epage>015019</epage><pages>015019-015019</pages><issn>1758-5090</issn><issn>1758-5082</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>28140345</pmid><doi>10.1088/1758-5090/aa5ba7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-5090
ispartof Biofabrication, 2017-02, Vol.9 (1), p.015019-015019
issn 1758-5090
1758-5082
1758-5090
language eng
recordid cdi_proquest_miscellaneous_1863220533
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects barrier model
cell co-culture
Cell Communication
Cell Proliferation
cell-cell interaction
Cells, Cultured
Coculture Techniques - instrumentation
Human Umbilical Vein Endothelial Cells
Humans
membrane
Membranes, Artificial
Microscopy, Fluorescence
Porosity
porous thin film
Silicon Dioxide - chemistry
Stem Cells - cytology
Stem Cells - metabolism
title Ultrathin transparent membranes for cellular barrier and co-culture models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20transparent%20membranes%20for%20cellular%20barrier%20and%20co-culture%20models&rft.jtitle=Biofabrication&rft.au=Carter,%20Robert%20N&rft.date=2017-02-14&rft.volume=9&rft.issue=1&rft.spage=015019&rft.epage=015019&rft.pages=015019-015019&rft.issn=1758-5090&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/aa5ba7&rft_dat=%3Cproquest_pubme%3E1863220533%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863220533&rft_id=info:pmid/28140345&rfr_iscdi=true